Home
Class 10
MATHS
For x^(2) + 2x + 5 to be a factor of x^(...

For `x^(2) + 2x + 5` to be a factor of `x^(4) + alphax^(2) + beta` the values of `alpha `and `beta` respectively are

A

2,5

B

5,25

C

6,25

D

5,2

Text Solution

AI Generated Solution

The correct Answer is:
To find the values of \( \alpha \) and \( \beta \) such that \( x^2 + 2x + 5 \) is a factor of \( x^4 + \alpha x^2 + \beta \), we can use polynomial long division. ### Step-by-Step Solution: 1. **Set Up the Division**: We need to divide \( x^4 + \alpha x^2 + \beta \) by \( x^2 + 2x + 5 \). 2. **First Division**: Divide the leading term \( x^4 \) by the leading term \( x^2 \): \[ \frac{x^4}{x^2} = x^2 \] This means we will multiply \( x^2 \) by the entire divisor \( x^2 + 2x + 5 \). 3. **Multiply and Subtract**: Multiply \( x^2 \) by \( x^2 + 2x + 5 \): \[ x^2(x^2 + 2x + 5) = x^4 + 2x^3 + 5x^2 \] Now, subtract this from \( x^4 + \alpha x^2 + \beta \): \[ (x^4 + \alpha x^2 + \beta) - (x^4 + 2x^3 + 5x^2) = -2x^3 + (\alpha - 5)x^2 + \beta \] 4. **Second Division**: Now, divide the leading term \( -2x^3 \) by the leading term \( x^2 \): \[ \frac{-2x^3}{x^2} = -2x \] Multiply \( -2x \) by \( x^2 + 2x + 5 \): \[ -2x(x^2 + 2x + 5) = -2x^3 - 4x^2 - 10x \] Subtract this from the previous result: \[ (-2x^3 + (\alpha - 5)x^2 + \beta) - (-2x^3 - 4x^2 - 10x) = ((\alpha - 5) + 4)x^2 + (10)x + \beta \] Simplifying gives: \[ (\alpha - 1)x^2 + 10x + \beta \] 5. **Third Division**: Now, divide the leading term \( (\alpha - 1)x^2 \) by the leading term \( x^2 \): \[ \frac{(\alpha - 1)x^2}{x^2} = \alpha - 1 \] Multiply \( \alpha - 1 \) by \( x^2 + 2x + 5 \): \[ (\alpha - 1)(x^2 + 2x + 5) = (\alpha - 1)x^2 + 2(\alpha - 1)x + 5(\alpha - 1) \] Subtract this from the previous result: \[ ((\alpha - 1)x^2 + 10x + \beta) - ((\alpha - 1)x^2 + 2(\alpha - 1)x + 5(\alpha - 1)) = (10 - 2(\alpha - 1))x + (\beta - 5(\alpha - 1)) \] 6. **Set Remainder to Zero**: For \( x^2 + 2x + 5 \) to be a factor, the remainder must be zero. Thus, we set: \[ 10 - 2(\alpha - 1) = 0 \quad \text{and} \quad \beta - 5(\alpha - 1) = 0 \] 7. **Solve for \( \alpha \)**: From the first equation: \[ 10 - 2\alpha + 2 = 0 \implies 12 = 2\alpha \implies \alpha = 6 \] 8. **Solve for \( \beta \)**: Substitute \( \alpha = 6 \) into the second equation: \[ \beta - 5(6 - 1) = 0 \implies \beta - 25 = 0 \implies \beta = 25 \] ### Final Answer: The values of \( \alpha \) and \( \beta \) are \( \alpha = 6 \) and \( \beta = 25 \).
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION ( HOTS) |3 Videos
  • POLYNOMIALS

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION ( HOTS) |3 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section (HOTS)|3 Videos
  • PROBABILITY

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION (HOTS)|3 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the zeros of 2x^(2)+5x-9 then the value of alpha beta is

If alpha and beta are the roots of the equation x^(2)+sqrt(alpha)x+beta=0 then the values of alpha and beta are

If alpha and beta are the roots of the equation x^(2)+sqrt(alpha)x+beta=0 then the values of alpha and beta are.-

If alpha and beta are the roots of x^(2)-2x+4=0 then the value of alpha^(6)+beta^(6) is

If alpha, beta are roots of x^(2)-2x-1=0 , then value of 5alpha^(4)+12beta^(3) is

If alpha and beta are the zeroes of x^2 - 8x + 1 , then the value of 1/alpha +1/beta - alpha beta is :

If alpha,beta, are roots of the equation x^(2)+sqrt(x)alpha+beta=0,beta beta then values of alpha and beta are 1. alpha=1 and beta=12 .alpha=1 and beta=-2 3.alpha=2 and beta=1alpha=2 and beta=-2

If alpha and beta are zeroes of x^(2)-5x+6 , then find the value of alpha^(2)+beta^(2) .

If alpah and beta are the zeros of the polynomial 2x^(2)+7x+5 , write the value of alpha+beta+alpha beta .