Home
Class 10
MATHS
If alpha, beta and gamma are the zeroes ...

If `alpha, beta and gamma` are the zeroes of the polynomial `f(x) = ax^(3) + bx^(2) + cx + d`, then `(1)/(alpha) +(1)/( beta) + (1)/(gamma) = `

A

`- (d)/( b)`

B

`( c)/( d)`

C

`- ( c)/( d)`

D

` - ( c)/( a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} \) given that \( \alpha, \beta, \) and \( \gamma \) are the roots of the polynomial \( f(x) = ax^3 + bx^2 + cx + d \). ### Step-by-Step Solution: 1. **Understanding the Roots:** The roots of the polynomial are given as \( \alpha, \beta, \gamma \). According to Vieta's formulas, we can express the sums and products of the roots in terms of the coefficients of the polynomial. 2. **Sum of Roots:** The sum of the roots \( \alpha + \beta + \gamma \) can be given by: \[ \alpha + \beta + \gamma = -\frac{b}{a} \] 3. **Sum of Product of Roots Taken Two at a Time:** The sum of the products of the roots taken two at a time \( \alpha\beta + \beta\gamma + \gamma\alpha \) is given by: \[ \alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a} \] 4. **Product of Roots:** The product of the roots \( \alpha\beta\gamma \) is given by: \[ \alpha\beta\gamma = -\frac{d}{a} \] 5. **Finding \( \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} \):** We can rewrite \( \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} \) as: \[ \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\beta\gamma + \gamma\alpha + \alpha\beta}{\alpha\beta\gamma} \] Substituting the values from Vieta's formulas: \[ = \frac{\frac{c}{a}}{-\frac{d}{a}} = -\frac{c}{d} \] 6. **Final Result:** Therefore, the value of \( \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} \) is: \[ \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = -\frac{c}{d} \]
Promotional Banner

Topper's Solved these Questions

  • IMO QUESTION PAPER 2018 SET B

    SCIENCE OLYMPIAD FOUNDATION |Exercise EVERYDAY MATHEMATICS|10 Videos
  • IMO QUESTION PAPER 2018 SET B

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION|5 Videos
  • IMO QUESTION PAPER 2018 SET A

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers section |5 Videos
  • IMO QUESTION PAPER 2019 SET A

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers section|5 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the zeros of the polynomial f(x)=ax^(3)+bx^(2)+cx+d, then (1)/(alpha)+(1)/(beta)+(1)/(gamma)=( a) (b)/(d)(b)(c)/(d)(c)(c)/(d)(d)(c)/(a)

If alpha,beta,gamma are the zeros of the polynomial f(x)=x^(3)-px^(2)+qx-r, then (1)/(alpha beta)+(1)/(beta gamma)+(1)/(gamma alpha)=

If alpha,beta,gamma are the zeroes of the polynomial f(x)=2x^(3)+6x^(2)-4x+9, find the value of (1)/(alpha beta)+(1)/(beta gamma)+(1)/(gamma alpha)

If alpha,beta,gamma are the zeros of the polynomial f(x)=x^(3)-px^(2)+qx-r, then (1)/(alpha beta)+(1)/(beta gamma)+(a)/(gamma alpha)=(r)/(p)( b) (p)/(r)(c)-(p)/(r)(d)-(r)/(p)

If alpha,betaandgamma are the zeros of the polynomial f(x)=ax^(3)+bx^(2)+cx+d , then alpha^(2)+beta^(2)+gamma^(2) is equal to

If alpha,beta,gamma are the zeroes of the polynomial f(x)=x^(3)-5x^(2)-2x+24 such that alpha beta=12, then

If alpha, beta, gamma are the zeros of the polynomial 2x^(3)+ x^(2) - 13 x+ 6 then alpha beta gamma = ?

If alpha, beta, gamma are the zeros of the polynomial p(x) = 6x^(3)+3x^(2)-5x+1, find the value of (1/alpha+1/beta+1/gamma).

If alpha, beta are the zeros of the polynomial f(x) = ax^2 + bx + C , then find 1/alpha^(2) +1/beta^(2) .

If alpha, beta, gamma are the zeros of the polynomial x^(3)-6x^(2) -x+ 30 then (alpha beta+beta gamma + gamma alpha) = ?