Home
Class 7
MATHS
Evaluate : ((1+ (2)/(9))- [2 (1)/(2)- (1...

Evaluate : `((1+ (2)/(9))- [2 (1)/(2)- (1(1)/(2)- ((-1)/(3)))])/((1+ 3(1)/(5)) + (1+2(2)/(3)))`

A

`25/(354)`

B

`5 (13)/(19)`

C

`3(8)/(33)`

D

`13 (5)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \[ \frac{\left(1 + \frac{2}{9}\right) - \left[2 \cdot \frac{1}{2} - \left(1 \cdot \frac{1}{2} - \left(-\frac{1}{3}\right)\right)\right]}{\left(1 + \frac{3}{5}\right) + \left(1 + \frac{2}{3}\right)} \] we will follow the order of operations (often remembered by the acronym PEMDAS/BODMAS: Parentheses/Brackets, Exponents/Orders, Multiplication and Division (from left to right), Addition and Subtraction (from left to right)). ### Step 1: Simplify the numerator 1. **Calculate \(1 + \frac{2}{9}\)**: \[ 1 + \frac{2}{9} = \frac{9}{9} + \frac{2}{9} = \frac{11}{9} \] 2. **Calculate the expression inside the brackets**: - First, calculate \(2 \cdot \frac{1}{2}\): \[ 2 \cdot \frac{1}{2} = 1 \] - Now, calculate \(1 \cdot \frac{1}{2}\): \[ 1 \cdot \frac{1}{2} = \frac{1}{2} \] - Next, calculate \(\frac{1}{2} - \left(-\frac{1}{3}\right)\): \[ \frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{5}{6} \] - Now, substitute back: \[ 1 - \frac{5}{6} = \frac{6}{6} - \frac{5}{6} = \frac{1}{6} \] 3. **Combine the results**: \[ \frac{11}{9} - \frac{1}{6} \] - To subtract these fractions, find a common denominator (which is 18): \[ \frac{11}{9} = \frac{22}{18}, \quad \frac{1}{6} = \frac{3}{18} \] - Now subtract: \[ \frac{22}{18} - \frac{3}{18} = \frac{19}{18} \] ### Step 2: Simplify the denominator 1. **Calculate \(1 + \frac{3}{5}\)**: \[ 1 + \frac{3}{5} = \frac{5}{5} + \frac{3}{5} = \frac{8}{5} \] 2. **Calculate \(1 + \frac{2}{3}\)**: \[ 1 + \frac{2}{3} = \frac{3}{3} + \frac{2}{3} = \frac{5}{3} \] 3. **Combine the results**: \[ \frac{8}{5} + \frac{5}{3} \] - To add these fractions, find a common denominator (which is 15): \[ \frac{8}{5} = \frac{24}{15}, \quad \frac{5}{3} = \frac{25}{15} \] - Now add: \[ \frac{24}{15} + \frac{25}{15} = \frac{49}{15} \] ### Step 3: Combine the results Now we have: \[ \frac{\frac{19}{18}}{\frac{49}{15}} = \frac{19}{18} \cdot \frac{15}{49} = \frac{19 \cdot 15}{18 \cdot 49} \] ### Step 4: Simplify the final expression 1. **Calculate the numerator**: \[ 19 \cdot 15 = 285 \] 2. **Calculate the denominator**: \[ 18 \cdot 49 = 882 \] 3. **Final result**: \[ \frac{285}{882} \] - Simplifying this fraction (both can be divided by 3): \[ \frac{285 \div 3}{882 \div 3} = \frac{95}{294} \] So, the final answer is: \[ \frac{95}{294} \]
Promotional Banner

Topper's Solved these Questions

  • IMO QUESTION PAPER 2018-19 SET - B

    SCIENCE OLYMPIAD FOUNDATION |Exercise EVERYDAY MATHEMATICS|10 Videos
  • IMO QUESTION PAPER 2018-19 SET - B

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION|5 Videos
  • IMO QUESTION PAPER 2017-18 SET A

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION|5 Videos
  • IMO QUESTION PAPER 2018-19 SET A

    SCIENCE OLYMPIAD FOUNDATION |Exercise Logical Reasoning|20 Videos

Similar Questions

Explore conceptually related problems

(2)/(3) -((1)/(2) -(1)/(3))/((1)/(2)+(1)/(3))xx3(1)/(3)+(5)/(6) =?

Evaluate (1) 2^(-3) (2)(-4)^(-2) (3)1/3^(-2) (4)(1/2)^(-5)

1+((1)/(2)+(1)/(3))/((1)/(3)-(1)/(6))/2-((4)/(5)of(5)/(6))/((2)/(3))

[3^(3)(((4)/(9))^((1)/(3))-((2)/(9))^((1)/(3))+((2)/(9))^((1)/(3)))^(-1)-1]^(3)=

Find the value of (2(1)/(2) - 1(2)/(11))/(3 + (1)/(3 + (1)/(3 + (1 )/(3 ))))

((1)/(3)times(2)/(9))/((1)/(3)times(1)/(5)+(1)/(3)times(1)/(3)+(1)/(3)times(2)/(9))

Evaluate det[[(1)/(a+1),(1)/(a+2),(1)/(a+3)(1)/(a+2),(1)/(a+3),(1)/(a+4)(1)/(a+3),(1)/(a+4),(1)/(a+5)]]