Home
Class 12
MATHS
किन्हीं वास्तविक संख्याओं alpha व beta ...

किन्हीं वास्तविक संख्याओं `alpha` व `beta` के लिए, माना `y_(alpha,beta) (x), x in R`, अवकल समीकरण `(dy)/(dx) + alphay = xe^(betax),y(1) = 1 ` का हल है।

A

`f(x) =x^2/2e^(-x)+(e-1/2)e^(-x)`

B

`f(x) =x^2/2e^(-x)+(e+1/2)e^(-x)`

C

`f(x) =e^2/2(x-1/2)+(e-e^2/4)e^(-x)`

D

`f(x) =e^x/2(1/2-x)+(e+e^2/4)e^(-x)`

लिखित उत्तर

Verified by Experts

The correct Answer is:
A, C

`(dy)/(dx) +alphay = xe^(betax)`
समाकलन गुणांक (I.F.) = `=e^(intalphadx)=e^(alphax)`
अतः हल है `y.e^(alphax)=intxe^(betax).e^(alphax)dx`
`ye^(alphax)=intxe^((alpha+beta)x)dx`
यदि `alpha + beta ne 0 `
`ye^(alphax)=x^(e(alpha+beta)x)/((alpha+beta))-(e(alpha+beta)x)/((alpha+beta)^2)+C`
`y=(xe^(betax))/((alpha+beta))-(xe^(betax))/((alpha+beta)^2)+Ce^(-alphax)`
`y=(e^(betax))/((alpha+beta))-(x-1/(alpha+beta))+Ce^(-alphax)" "...(i)`
समीकरण (i) में `alpha = beta = 1` रखने पर
`y =(e^x)/2 (x-1/2)+Ce^(-x)`
`y(1) = 1`
`1=e/2xx1/2 +C/2 implies C=e -e^2/4`
अतः,`y=e^x/2(x-1/2)+(e-e^2/4)e^(-x)`
यदि `alpha + beta = 0` तथा `alpha = 1`
`(dy)/(dx)+y=xe^(-x)`
समाकलन गुणांक = `e^x`
`ye^(x) = intxdx`
`ye^x=x^2/2+C`
`y=x^2/2e^(-x)+Ce^(-x)`
`y(1)=1`
`1=1/(2e)+C/eimpliesC=e-1/2`
`y=x^2/2e^(-x)+(e-1/2)e^(-x)`
Promotional Banner

टॉपर्स ने हल किए ये सवाल

  • JEE ADVANCED पेपर - 2 (2021)

    JEE Main & Advanced (Hindi Medium)|Exercise MATHEMATICS (खंड-2)|6 Videos
  • JEE ADVANCED पेपर - 2 (2021)

    JEE Main & Advanced (Hindi Medium)|Exercise MATHEMATICS (खंड-3)|4 Videos
  • JEE ADVANCED पेपर - 2 (2016)

    JEE Main & Advanced (Hindi Medium)|Exercise भाग- III गणित (खंड-3)|4 Videos
  • JEE ADVANCED सॉल्वड पेपर 2019

    JEE Main & Advanced (Hindi Medium)|Exercise पेपर 2 खण्ड 3|4 Videos