Home
Class 9
MATHS
Factorise : 40(3x + 4y)^(2) + 14(3x + 4y...

Factorise : `40(3x + 4y)^(2) + 14(3x + 4y) + 1`

A

`(12x + 16y + 4)(30x + 40y + 10)`

B

`(12x + 16y + 1)(30x + 40y + 1)`

C

`(3x + 4y + 4)(3x + 4y + 10)`

D

`(16x + 12y + 4)(40x + 30y + 10)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( 40(3x + 4y)^2 + 14(3x + 4y) + 1 \), we can follow these steps: ### Step 1: Substitute Let \( T = 3x + 4y \). Then, we can rewrite the expression in terms of \( T \): \[ 40T^2 + 14T + 1 \] **Hint**: Substituting a variable can simplify the expression, making it easier to factor. ### Step 2: Factor the Quadratic Now, we need to factor the quadratic expression \( 40T^2 + 14T + 1 \). We look for two numbers that multiply to \( 40 \times 1 = 40 \) and add up to \( 14 \). The numbers that satisfy this condition are \( 10 \) and \( 4 \). **Hint**: When factoring quadratics, look for two numbers that multiply to the product of the leading coefficient and the constant term, and add to the middle coefficient. ### Step 3: Rewrite the Middle Term We can rewrite the expression as: \[ 40T^2 + 10T + 4T + 1 \] **Hint**: Breaking down the middle term helps in grouping the expression for factoring. ### Step 4: Group the Terms Now, we group the terms: \[ (40T^2 + 10T) + (4T + 1) \] **Hint**: Grouping terms allows us to factor by grouping. ### Step 5: Factor Each Group Now, we factor out the common factors from each group: \[ 10T(4T + 1) + 1(4T + 1) \] **Hint**: Look for common factors in each group to simplify the expression. ### Step 6: Factor Out the Common Binomial Now we can factor out the common binomial \( (4T + 1) \): \[ (10T + 1)(4T + 1) \] **Hint**: Factoring out common binomials is a key step in simplifying expressions. ### Step 7: Substitute Back Now, we substitute back \( T = 3x + 4y \): \[ (10(3x + 4y) + 1)(4(3x + 4y) + 1) \] ### Step 8: Simplify Now, we simplify each factor: 1. \( 10(3x + 4y) + 1 = 30x + 40y + 1 \) 2. \( 4(3x + 4y) + 1 = 12x + 16y + 1 \) Thus, the final factorized form of the expression is: \[ (30x + 40y + 1)(12x + 16y + 1) \] **Final Answer**: \[ (30x + 40y + 1)(12x + 16y + 1) \]
Promotional Banner

Topper's Solved these Questions

  • IMO QUESTION PAPER SET A 2019

    SCIENCE OLYMPIAD FOUNDATION |Exercise Everyday Mathematics|10 Videos
  • IMO QUESTION PAPER SET A 2019

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section|5 Videos
  • IMO QUESTION PAPER SET A 2017

    SCIENCE OLYMPIAD FOUNDATION |Exercise ARCHIEVERS SECTION|5 Videos
  • IMO QUESTION PAPER SET B 2019

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION |5 Videos

Similar Questions

Explore conceptually related problems

Factorise: 49 (2x + 3y) ^(2) - 70 ( 4x ^(2) - 9 y ^(2)) + 25 ( 2 x - 3y ) ^(2)

Factorise 4x ^(4) + 3x ^(2) +1

Factorise: (5x - y) ^(3) + (y - 4z) ^(3) + (4z - 5x) ^(3)

Factorise: 3x ^(2) - 4x -4

Factorise : x ^(4) + x ^(2) y ^(2) + y ^(4).

Factorise: 3y ^(2) + 14y + 8

Factorise :10x^(2)-18x^(3)+14x^(4)

Factorise: 14 x ^(3) + 21x ^(4) y - 28 x ^(2) y ^(2)

Factorise : x^(4) + y^(4) - 2x^(2)y^(2)