Home
Class 12
MATHS
The value of int0^(pi)(e^(cosx)sinx)/((1...

The value of `int_0^(pi)(e^(cosx)sinx)/((1+cos^2x)(e^(cosx)+e^(-cosx)))dx` is equal to :

A

`pi^2/4`

B

`pi^2/2`

C

`pi/4`

D

`pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^{\pi} \frac{e^{\cos x} \sin x}{(1 + \cos^2 x)(e^{\cos x} + e^{-\cos x})} \, dx, \] we can use a symmetry property of definite integrals. ### Step 1: Substitute \( x \) with \( \pi - x \) We start by substituting \( x \) with \( \pi - x \): \[ I = \int_0^{\pi} \frac{e^{\cos(\pi - x)} \sin(\pi - x)}{(1 + \cos^2(\pi - x))(e^{\cos(\pi - x)} + e^{-\cos(\pi - x)})} \, dx. \] Using the properties of sine and cosine, we have: - \( \sin(\pi - x) = \sin x \) - \( \cos(\pi - x) = -\cos x \) Thus, the integral becomes: \[ I = \int_0^{\pi} \frac{e^{-\cos x} \sin x}{(1 + \cos^2 x)(e^{-\cos x} + e^{\cos x})} \, dx. \] ### Step 2: Combine the two expressions for \( I \) Now we have two expressions for \( I \): 1. \( I = \int_0^{\pi} \frac{e^{\cos x} \sin x}{(1 + \cos^2 x)(e^{\cos x} + e^{-\cos x})} \, dx \) 2. \( I = \int_0^{\pi} \frac{e^{-\cos x} \sin x}{(1 + \cos^2 x)(e^{-\cos x} + e^{\cos x})} \, dx \) Adding these two equations gives: \[ 2I = \int_0^{\pi} \frac{e^{\cos x} \sin x + e^{-\cos x} \sin x}{(1 + \cos^2 x)(e^{\cos x} + e^{-\cos x})} \, dx. \] ### Step 3: Simplify the numerator The numerator simplifies to: \[ e^{\cos x} + e^{-\cos x} = 2 \cosh(\cos x). \] Thus, we can write: \[ 2I = \int_0^{\pi} \frac{2 \sin x \cosh(\cos x)}{(1 + \cos^2 x)(2 \cosh(\cos x))} \, dx. \] This simplifies to: \[ 2I = \int_0^{\pi} \frac{\sin x}{1 + \cos^2 x} \, dx. \] ### Step 4: Solve for \( I \) Now we can divide both sides by 2: \[ I = \frac{1}{2} \int_0^{\pi} \frac{\sin x}{1 + \cos^2 x} \, dx. \] ### Step 5: Change of variable To evaluate the integral \( \int_0^{\pi} \frac{\sin x}{1 + \cos^2 x} \, dx \), we can use the substitution \( t = \cos x \), which gives \( dt = -\sin x \, dx \). The limits change from \( x = 0 \) (where \( t = 1 \)) to \( x = \pi \) (where \( t = -1 \)). Thus, we have: \[ \int_0^{\pi} \frac{\sin x}{1 + \cos^2 x} \, dx = \int_1^{-1} \frac{-1}{1 + t^2} \, dt = \int_{-1}^{1} \frac{1}{1 + t^2} \, dt. \] ### Step 6: Evaluate the integral The integral \( \int_{-1}^{1} \frac{1}{1 + t^2} \, dt \) is a standard integral that evaluates to: \[ \int_{-1}^{1} \frac{1}{1 + t^2} \, dt = \left[ \tan^{-1}(t) \right]_{-1}^{1} = \tan^{-1}(1) - \tan^{-1}(-1) = \frac{\pi}{4} - \left(-\frac{\pi}{4}\right) = \frac{\pi}{2}. \] ### Step 7: Final result for \( I \) Thus, we have: \[ I = \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi}{4}. \] ### Conclusion The value of the integral is: \[ \boxed{\frac{\pi}{4}}. \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - A)|20 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics- Section B|10 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos
  • JEE MAINS 2023 JAN ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|360 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(pi)(e^(cosx))/(e^(cosx)+e^(-cosx))dx .

Evaluate: int_0^pi(e^(cosx))/(e^(cosx)+e^(-cosx))dx

Evaluate: int_0^pi1/(1+e^(cosx))dx

The value of the integral int_(0)^(pi)(e^(|cosx|)sinx)/(1+e^(cotx))dx is equal to

int(1+tanx)/(e^(-x)cosx)dx is equal to

The value of int_(0)^(pi//2)(cosxdx)/(1+cosx+sinx) is equal to

JEE MAINS PREVIOUS YEAR-JEE MAINS 2022-MATHEMATICS
  1. Let a circle C touch the lines L1 : 4x-3y +K1=0 and L2: 4x-3y + K2=0, ...

    Text Solution

    |

  2. The value of int0^(pi)(e^(cosx)sinx)/((1+cos^2x)(e^(cosx)+e^(-cosx)))d...

    Text Solution

    |

  3. Let a, b and c be the length of sides of a triangle ABC such that (a+b...

    Text Solution

    |

  4. Let f:N rarr R be a function such that f(x+y)=2f(x) f(y) for natural ...

    Text Solution

    |

  5. Let A be a 3xx3 real matrix such that A((1),(1),(0))=((1),(1),(0)),A(...

    Text Solution

    |

  6. Let f: RrarrR be defined as f(x) = x^3+x-5 If g(x) is a function s...

    Text Solution

    |

  7. Consider the following two propositions : P1:~(p rarr ~ q) P2: (p...

    Text Solution

    |

  8. 1/(2.3^10)+1/(2^2 3^9)+. . .+1/(2^9. 3^2)+1/(2^10 .3^1)=k/(2^10 . 3^10...

    Text Solution

    |

  9. f(x) be a polynomial such that f(x)+f'(x)+f''(x)=x^5+64 value of lim(x...

    Text Solution

    |

  10. Let E1 and E2 be two events such that P(E1/E2)=1/2 , P(E2/E1)=3/4, P(E...

    Text Solution

    |

  11. Let A=[(0,-2),(2,0)] and M=sum(k=1)^10 A^(2k) , N=sum(k=1)^10 A^(2k-1)...

    Text Solution

    |

  12. If g(0,oo) to R is a differentiable function int[(x.(cos-sinx))/(e^x+1...

    Text Solution

    |

  13. Let f: R rarr R and g:R rarr R be two functions defined by f(x) = log...

    Text Solution

    |

  14. Let veca = a(1) hati + a2 hatj + a(3) hatk a(i) =1, 2, 3 be a vector w...

    Text Solution

    |

  15. Let y=y(x) be the solution of the differential equation (x+1)y'-y= e^(...

    Text Solution

    |

  16. If y=m1x +c1 and y=m2x +c2, m1 nem2 , are two common tangents of circ...

    Text Solution

    |

  17. Let Q be the mirror image of the point P(1, 0, 1) with respect to the ...

    Text Solution

    |

  18. If y=y(x) be the solution of given equation y^2dx+(x^2-xy+y^2)dy=0 and...

    Text Solution

    |

  19. Let x=2t, y =t^2/3 be a conic. Let S be the focus and B be the point ...

    Text Solution

    |

  20. Let a circle C in complex plane pass through the points z1=3+4i, z2=4+...

    Text Solution

    |