Home
Class 12
MATHS
Let f:N rarr R be a function such that ...

Let `f:N rarr R` be a function such that f(x+y)=2f(x) f(y) for natural numbers x and y. If f(1)=2, then the value of a for which `sum_(k=1)^(10)f(alpha+k)=512/3(2^(20)-1)`

A

2

B

3

C

4

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to analyze the given functional equation and the conditions provided. ### Step 1: Understand the functional equation We have the function \( f: \mathbb{N} \to \mathbb{R} \) defined by the equation: \[ f(x+y) = 2f(x)f(y) \] for natural numbers \( x \) and \( y \). We also know that \( f(1) = 2 \). ### Step 2: Find \( f(2) \) Using the functional equation, we can find \( f(2) \): \[ f(2) = f(1+1) = 2f(1)f(1) = 2 \cdot 2 \cdot 2 = 8 \] ### Step 3: Find \( f(3) \) Next, we calculate \( f(3) \): \[ f(3) = f(2+1) = 2f(2)f(1) = 2 \cdot 8 \cdot 2 = 32 \] ### Step 4: Find \( f(4) \) Now, we find \( f(4) \): \[ f(4) = f(3+1) = 2f(3)f(1) = 2 \cdot 32 \cdot 2 = 128 \] ### Step 5: Find \( f(5) \) Continuing, we find \( f(5) \): \[ f(5) = f(4+1) = 2f(4)f(1) = 2 \cdot 128 \cdot 2 = 512 \] ### Step 6: Find \( f(6) \) Next, we calculate \( f(6) \): \[ f(6) = f(5+1) = 2f(5)f(1) = 2 \cdot 512 \cdot 2 = 2048 \] ### Step 7: Find \( f(7) \) Now, we find \( f(7) \): \[ f(7) = f(6+1) = 2f(6)f(1) = 2 \cdot 2048 \cdot 2 = 8192 \] ### Step 8: Find \( f(8) \) Next, we calculate \( f(8) \): \[ f(8) = f(7+1) = 2f(7)f(1) = 2 \cdot 8192 \cdot 2 = 32768 \] ### Step 9: Find \( f(9) \) Now, we find \( f(9) \): \[ f(9) = f(8+1) = 2f(8)f(1) = 2 \cdot 32768 \cdot 2 = 131072 \] ### Step 10: Find \( f(10) \) Finally, we calculate \( f(10) \): \[ f(10) = f(9+1) = 2f(9)f(1) = 2 \cdot 131072 \cdot 2 = 524288 \] ### Step 11: Generalize \( f(n) \) From the calculations, we observe that: - \( f(1) = 2 = 2^1 \) - \( f(2) = 8 = 2^3 \) - \( f(3) = 32 = 2^5 \) - \( f(4) = 128 = 2^7 \) - \( f(5) = 512 = 2^9 \) - \( f(6) = 2048 = 2^{11} \) - \( f(7) = 8192 = 2^{13} \) - \( f(8) = 32768 = 2^{15} \) - \( f(9) = 131072 = 2^{17} \) - \( f(10) = 524288 = 2^{19} \) We can see that: \[ f(n) = 2^{2n - 1} \] ### Step 12: Calculate \( \sum_{k=1}^{10} f(\alpha + k) \) Now, we need to calculate: \[ \sum_{k=1}^{10} f(\alpha + k) = \sum_{k=1}^{10} 2^{2(\alpha + k) - 1} = \sum_{k=1}^{10} 2^{2\alpha + 2k - 1} \] This can be simplified as: \[ = 2^{2\alpha - 1} \sum_{k=1}^{10} 2^{2k} = 2^{2\alpha - 1} \cdot (2^2 + 2^4 + 2^6 + 2^8 + 2^{10} + 2^{12} + 2^{14} + 2^{16} + 2^{18} + 2^{20}) \] ### Step 13: Sum the geometric series The sum \( S = 2^2 + 2^4 + 2^6 + \ldots + 2^{20} \) is a geometric series with: - First term \( a = 4 \) (which is \( 2^2 \)) - Common ratio \( r = 4 \) - Number of terms \( n = 10 \) The sum of a geometric series is given by: \[ S_n = a \frac{r^n - 1}{r - 1} = 4 \frac{4^{10} - 1}{4 - 1} = \frac{4(2^{20} - 1)}{3} \] ### Step 14: Combine results Thus, we have: \[ \sum_{k=1}^{10} f(\alpha + k) = 2^{2\alpha - 1} \cdot \frac{4(2^{20} - 1)}{3} \] ### Step 15: Set the equation We need to set this equal to \( \frac{512}{3}(2^{20} - 1) \): \[ 2^{2\alpha - 1} \cdot \frac{4(2^{20} - 1)}{3} = \frac{512}{3}(2^{20} - 1) \] ### Step 16: Solve for \( \alpha \) Cancel \( \frac{1}{3}(2^{20} - 1) \) from both sides: \[ 2^{2\alpha - 1} \cdot 4 = 512 \] This simplifies to: \[ 2^{2\alpha + 1} = 512 \] Since \( 512 = 2^9 \), we have: \[ 2\alpha + 1 = 9 \implies 2\alpha = 8 \implies \alpha = 4 \] ### Final Answer Thus, the value of \( \alpha \) is: \[ \alpha = 4 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - A)|20 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics- Section B|10 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos
  • JEE MAINS 2023 JAN ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|360 Videos

Similar Questions

Explore conceptually related problems

Let f:R rarr R be a function such that |f(x)-f(y)|<=6|x-y|^(2) for all x,y in R. if f(3)=6 then f(6) equals:

Let f:R rarr R be a function given by f(x+y)=f(x)f(y) for all x,y in R .If f'(0)=2 then f(x) is equal to

Let f be a function satisfying f(x+y)=f(x)+f(y) for all x,y in R. If f(1)=k then f(n),n in N is equal to

Let f:R-{0}rarr R be a function satisfying f((x)/(y))=(f(x))/(f(y)) for all x,y,f(y)!=0 .If f'(1)=2024 ,then

If 2f(xy) =(f(x))^(y) + (f(y))^(x) for all x, y in R and f(1) =3 , then the value of sum_(t=1)^(10) f(r) is equal to

If f:R rarr R be a function such that f(x+2y)=f(x)+f(2y)+4xy, AA x,y and f(2) = 4 then, f(1)-f(0) is equal to

Let f:R rarr R be a continuous function such that |f(x)-f(y)|>=|x-y| for all x,y in R then f(x) will be

Let f be a function satisfying f(x+y)=f(x) *f(y) for all x,y, in R. If f (1) =3 then sum_(r=1)^(n) f (r) is equal to

If f:R rarr R be a differentiable function such that f(x+2y)=f(x)+f(2y)+4xy, AA x,y in R , f(2)=10 , then f(3)=?

Let a function f:R rarr R such that f(1)=2 and f(x+y)=2^(x)f(y)+4^(y)f(x)AA x,y in R . If f'(2)=kln2 ,then the value of k is

JEE MAINS PREVIOUS YEAR-JEE MAINS 2022-MATHEMATICS
  1. The value of int0^(pi)(e^(cosx)sinx)/((1+cos^2x)(e^(cosx)+e^(-cosx)))d...

    Text Solution

    |

  2. Let a, b and c be the length of sides of a triangle ABC such that (a+b...

    Text Solution

    |

  3. Let f:N rarr R be a function such that f(x+y)=2f(x) f(y) for natural ...

    Text Solution

    |

  4. Let A be a 3xx3 real matrix such that A((1),(1),(0))=((1),(1),(0)),A(...

    Text Solution

    |

  5. Let f: RrarrR be defined as f(x) = x^3+x-5 If g(x) is a function s...

    Text Solution

    |

  6. Consider the following two propositions : P1:~(p rarr ~ q) P2: (p...

    Text Solution

    |

  7. 1/(2.3^10)+1/(2^2 3^9)+. . .+1/(2^9. 3^2)+1/(2^10 .3^1)=k/(2^10 . 3^10...

    Text Solution

    |

  8. f(x) be a polynomial such that f(x)+f'(x)+f''(x)=x^5+64 value of lim(x...

    Text Solution

    |

  9. Let E1 and E2 be two events such that P(E1/E2)=1/2 , P(E2/E1)=3/4, P(E...

    Text Solution

    |

  10. Let A=[(0,-2),(2,0)] and M=sum(k=1)^10 A^(2k) , N=sum(k=1)^10 A^(2k-1)...

    Text Solution

    |

  11. If g(0,oo) to R is a differentiable function int[(x.(cos-sinx))/(e^x+1...

    Text Solution

    |

  12. Let f: R rarr R and g:R rarr R be two functions defined by f(x) = log...

    Text Solution

    |

  13. Let veca = a(1) hati + a2 hatj + a(3) hatk a(i) =1, 2, 3 be a vector w...

    Text Solution

    |

  14. Let y=y(x) be the solution of the differential equation (x+1)y'-y= e^(...

    Text Solution

    |

  15. If y=m1x +c1 and y=m2x +c2, m1 nem2 , are two common tangents of circ...

    Text Solution

    |

  16. Let Q be the mirror image of the point P(1, 0, 1) with respect to the ...

    Text Solution

    |

  17. If y=y(x) be the solution of given equation y^2dx+(x^2-xy+y^2)dy=0 and...

    Text Solution

    |

  18. Let x=2t, y =t^2/3 be a conic. Let S be the focus and B be the point ...

    Text Solution

    |

  19. Let a circle C in complex plane pass through the points z1=3+4i, z2=4+...

    Text Solution

    |

  20. Let Cr denote the binomial coefficient of x' in the expansion of (1 +...

    Text Solution

    |