Home
Class 12
MATHS
Let A be a 3xx3 real matrix such that A...

Let A be a `3xx3` real matrix such that `A((1),(1),(0))=((1),(1),(0)),A((1),(0),(1))=((-1),(0),(1))and ((0),(0),(1))=((1),(1),(2))`
If `X=(x_1, x_2, x_3)^T` and I is an identity matrix of order 3, then the system `(A-2I)X=((4),(1),(1))` has :

A

no solution

B

infinitely many solutions

C

unique solution

D

exactly two solutions

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given conditions and find the matrix \( A \) and then determine the nature of the solutions to the system \( (A - 2I)X = (4, 1, 1)^T \). ### Step 1: Formulate the matrix \( A \) We have the following conditions: 1. \( A \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \) 2. \( A \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \) 3. \( A \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \) Let \( A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \). Using the first condition: \[ A \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a_{11} + a_{12} \\ a_{21} + a_{22} \\ a_{31} + a_{32} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \] This gives us the equations: 1. \( a_{11} + a_{12} = 1 \) 2. \( a_{21} + a_{22} = 1 \) 3. \( a_{31} + a_{32} = 0 \) Using the second condition: \[ A \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} a_{11} + a_{13} \\ a_{21} + a_{23} \\ a_{31} + a_{33} \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \] This gives us the equations: 4. \( a_{11} + a_{13} = -1 \) 5. \( a_{21} + a_{23} = 0 \) 6. \( a_{31} + a_{33} = 1 \) Using the third condition: \[ A \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \] This gives us: 7. \( a_{13} = 1 \) 8. \( a_{23} = 1 \) 9. \( a_{33} = 2 \) ### Step 2: Solve for the coefficients From equation 7: - \( a_{13} = 1 \) Substituting \( a_{13} \) into equation 4: - \( a_{11} + 1 = -1 \) ⇒ \( a_{11} = -2 \) From equation 5: - \( a_{21} + 1 = 0 \) ⇒ \( a_{21} = -1 \) From equations 1 and 2: - \( -2 + a_{12} = 1 \) ⇒ \( a_{12} = 3 \) - \( -1 + a_{22} = 1 \) ⇒ \( a_{22} = 2 \) From equations 3 and 6: - \( a_{31} + a_{32} = 0 \) ⇒ \( a_{32} = -a_{31} \) - \( a_{31} + 2 = 1 \) ⇒ \( a_{31} = -1 \) ⇒ \( a_{32} = 1 \) ### Step 3: Construct matrix \( A \) Now we can construct the matrix \( A \): \[ A = \begin{pmatrix} -2 & 3 & 1 \\ -1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix} \] ### Step 4: Calculate \( A - 2I \) Now, we calculate \( A - 2I \): \[ A - 2I = \begin{pmatrix} -2-2 & 3 & 1 \\ -1 & 2-2 & 1 \\ -1 & 1 & 2-2 \end{pmatrix} = \begin{pmatrix} -4 & 3 & 1 \\ -1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \] ### Step 5: Solve the system \( (A - 2I)X = (4, 1, 1)^T \) We need to solve: \[ \begin{pmatrix} -4 & 3 & 1 \\ -1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \\ 1 \end{pmatrix} \] ### Step 6: Form the augmented matrix and row reduce The augmented matrix is: \[ \begin{pmatrix} -4 & 3 & 1 & | & 4 \\ -1 & 0 & 1 & | & 1 \\ -1 & 1 & 0 & | & 1 \end{pmatrix} \] Perform row operations to reduce this matrix. After performing the necessary row operations, we will find that the system has infinitely many solutions. ### Conclusion The system \( (A - 2I)X = (4, 1, 1)^T \) has infinitely many solutions.
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - A)|20 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics- Section B|10 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos
  • JEE MAINS 2023 JAN ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|360 Videos

Similar Questions

Explore conceptually related problems

If A=[(x,1),(1,0)] and A^(2) is the identity matrix, then x is equal to

If A=[[1, 0, 0], [0, 1, 1], [0, -2, 4]] and A^(-1)=(1)/(6)(A^(2)+cA+dI) , where c, din R and I is an identity matrix of order 3, then (c, d)=

Let A=[(2,0,7),(0,1,0),(1,-2,1)] and B=[(-k,14k,7k),(0,1,0),(k,-4k,-2k)] . If AB=I , where I is an identity matrix of order 3, then the sum of all elements of matrix B is equal to

If A=[(1, 0,0),(0,1,0),(a,b,-1)] and I is the unit matrix of order 3, then A^(2)+2A^(4)+4A^(6) is equal to

Let M be a 3xx3 matrix satisfying M[{:(0),(1),(0):}]=[{:(-1),(2),(3):}],M[{:(1),(-1),(0):}]=[{:(1),(1),(1):}]=[{:(0),(0),(12):}] then the sum of the diagonal entries of M is

If [(1,x,1)][(1,3,2),(0,5,1),(0,3,2)][(x),(1),(-2)]=[0] then x is

lim_(x rarr0)((1+x)^((1)/(3))-(1-x)^((1)/(3)))/(x)=(2)/(3)

lim_(x rarr0)((1+x)^((1)/(3))-(1-x)^((1)/(3)))/(x)=(2)/(3)

JEE MAINS PREVIOUS YEAR-JEE MAINS 2022-MATHEMATICS
  1. Let a, b and c be the length of sides of a triangle ABC such that (a+b...

    Text Solution

    |

  2. Let f:N rarr R be a function such that f(x+y)=2f(x) f(y) for natural ...

    Text Solution

    |

  3. Let A be a 3xx3 real matrix such that A((1),(1),(0))=((1),(1),(0)),A(...

    Text Solution

    |

  4. Let f: RrarrR be defined as f(x) = x^3+x-5 If g(x) is a function s...

    Text Solution

    |

  5. Consider the following two propositions : P1:~(p rarr ~ q) P2: (p...

    Text Solution

    |

  6. 1/(2.3^10)+1/(2^2 3^9)+. . .+1/(2^9. 3^2)+1/(2^10 .3^1)=k/(2^10 . 3^10...

    Text Solution

    |

  7. f(x) be a polynomial such that f(x)+f'(x)+f''(x)=x^5+64 value of lim(x...

    Text Solution

    |

  8. Let E1 and E2 be two events such that P(E1/E2)=1/2 , P(E2/E1)=3/4, P(E...

    Text Solution

    |

  9. Let A=[(0,-2),(2,0)] and M=sum(k=1)^10 A^(2k) , N=sum(k=1)^10 A^(2k-1)...

    Text Solution

    |

  10. If g(0,oo) to R is a differentiable function int[(x.(cos-sinx))/(e^x+1...

    Text Solution

    |

  11. Let f: R rarr R and g:R rarr R be two functions defined by f(x) = log...

    Text Solution

    |

  12. Let veca = a(1) hati + a2 hatj + a(3) hatk a(i) =1, 2, 3 be a vector w...

    Text Solution

    |

  13. Let y=y(x) be the solution of the differential equation (x+1)y'-y= e^(...

    Text Solution

    |

  14. If y=m1x +c1 and y=m2x +c2, m1 nem2 , are two common tangents of circ...

    Text Solution

    |

  15. Let Q be the mirror image of the point P(1, 0, 1) with respect to the ...

    Text Solution

    |

  16. If y=y(x) be the solution of given equation y^2dx+(x^2-xy+y^2)dy=0 and...

    Text Solution

    |

  17. Let x=2t, y =t^2/3 be a conic. Let S be the focus and B be the point ...

    Text Solution

    |

  18. Let a circle C in complex plane pass through the points z1=3+4i, z2=4+...

    Text Solution

    |

  19. Let Cr denote the binomial coefficient of x' in the expansion of (1 +...

    Text Solution

    |

  20. The number of 3-digit odd numbers, whose sum of digits is a multiple o...

    Text Solution

    |