Home
Class 12
MATHS
Let A=[(0,-2),(2,0)] and M=sum(k=1)^10 A...

Let `A=[(0,-2),(2,0)] and M=sum_(k=1)^10 A^(2k) , N=sum_(k=1)^10 A^(2k-1)` then `MN^2` is

A

a non-identity symmetric matrix

B

a skew-symmetric matrix

C

neither symmetric nor skew-symmetric matrix

D

an identity matrix

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - A)|20 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics- Section B|10 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos
  • JEE MAINS 2023 JAN ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|360 Videos

Similar Questions

Explore conceptually related problems

Find the sum_(k=1)^(oo) sum_(n=1)^(oo)k/(2^(n+k)) .

If I=sum_(k=2)^(10)int_(k)^(k^(2))(k-1)/(x(x-1))dx, then

Evaluate :sum_(k=1)^(10)(3+2^(k))

Find the sum sum_(k=0)^(10)2^(20)C_(k)

Evaluate : sum_(k=1)^n (2^k+3^(k-1))

sum_(k=1)^(2n+1)(-1)^(k-1)k^(2)=

Let U_(n)=sum_(k=1)^(n)(n)/(n^(2)+k^(2)),S_(n)=sum_(k=0)^(n-1)(n)/(n^(2)+k^(2)) then

sum_ (k = 1) ^ (n) (2 ^ (k) + 3 ^ (k-1))

If sum_(k=1)^n(sum_(m=1)^k m^2)=a n^4+b n^3+c n^2+dn+e then -

JEE MAINS PREVIOUS YEAR-JEE MAINS 2022-MATHEMATICS
  1. f(x) be a polynomial such that f(x)+f'(x)+f''(x)=x^5+64 value of lim(x...

    Text Solution

    |

  2. Let E1 and E2 be two events such that P(E1/E2)=1/2 , P(E2/E1)=3/4, P(E...

    Text Solution

    |

  3. Let A=[(0,-2),(2,0)] and M=sum(k=1)^10 A^(2k) , N=sum(k=1)^10 A^(2k-1)...

    Text Solution

    |

  4. If g(0,oo) to R is a differentiable function int[(x.(cos-sinx))/(e^x+1...

    Text Solution

    |

  5. Let f: R rarr R and g:R rarr R be two functions defined by f(x) = log...

    Text Solution

    |

  6. Let veca = a(1) hati + a2 hatj + a(3) hatk a(i) =1, 2, 3 be a vector w...

    Text Solution

    |

  7. Let y=y(x) be the solution of the differential equation (x+1)y'-y= e^(...

    Text Solution

    |

  8. If y=m1x +c1 and y=m2x +c2, m1 nem2 , are two common tangents of circ...

    Text Solution

    |

  9. Let Q be the mirror image of the point P(1, 0, 1) with respect to the ...

    Text Solution

    |

  10. If y=y(x) be the solution of given equation y^2dx+(x^2-xy+y^2)dy=0 and...

    Text Solution

    |

  11. Let x=2t, y =t^2/3 be a conic. Let S be the focus and B be the point ...

    Text Solution

    |

  12. Let a circle C in complex plane pass through the points z1=3+4i, z2=4+...

    Text Solution

    |

  13. Let Cr denote the binomial coefficient of x' in the expansion of (1 +...

    Text Solution

    |

  14. The number of 3-digit odd numbers, whose sum of digits is a multiple o...

    Text Solution

    |

  15. Let theta be the angle between the vectors veca and vecb , where |veca...

    Text Solution

    |

  16. Let the abscissae of the two points P and Q be the roots of 2x^2-rx+p=...

    Text Solution

    |

  17. The number of values of x in the interval (pi/4,(7pi)/4) for which ...

    Text Solution

    |

  18. For a natural number n, let alpha(n) = 19^(n)-12^n . Then, the value o...

    Text Solution

    |

  19. If f(x)={(2(1-x/2))^25(2+x)^25}^(1/50) and g(x)=f(f(f(x)))+f(f(x)) the...

    Text Solution

    |

  20. Let the lines L1: vecr=lamda(hati+2hatj+3hatk), lamdainR L2: vecr=...

    Text Solution

    |