Home
Class 12
MATHS
Let veca = a(1) hati + a2 hatj + a(3) ha...

Let `veca = a_(1) hati + a_2 hatj + a_(3) hatk a_(i) =1, 2, 3` be a vector which makes equal angles with the coordinate axes OX, OY and OZ. Also, let the projection of `veca` on the vector `3hati + 4hatj` be 7.
Let `vecb` be a vector obtained by rotating `veca` with `90^@`. If `veca, vecb` and .x-axis are coplanar, then projection of a vector `vecb` on `3hati + 4hatj` is equal to :

A

`sqrt7`

B

`sqrt2`

C

2

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the reasoning laid out in the video transcript. ### Step 1: Define the Vector \(\vec{a}\) Given that \(\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}\) makes equal angles with the coordinate axes, we know that: \[ \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 \] Since the angles are equal, we can set \(\cos \alpha = \cos \beta = \cos \gamma = x\). Thus: \[ 3x^2 = 1 \implies x^2 = \frac{1}{3} \implies x = \frac{1}{\sqrt{3}} \] Therefore, we can express the components of \(\vec{a}\) as: \[ \vec{a} = \lambda \left( \frac{1}{\sqrt{3}} \hat{i} + \frac{1}{\sqrt{3}} \hat{j} + \frac{1}{\sqrt{3}} \hat{k} \right) = \frac{\lambda}{\sqrt{3}} \hat{i} + \frac{\lambda}{\sqrt{3}} \hat{j} + \frac{\lambda}{\sqrt{3}} \hat{k} \] ### Step 2: Calculate the Projection of \(\vec{a}\) on \(\vec{d} = 3\hat{i} + 4\hat{j}\) The projection of \(\vec{a}\) on \(\vec{d}\) is given as 7. The formula for projection is: \[ \text{Projection} = \frac{\vec{a} \cdot \vec{d}}{|\vec{d}|} \] First, we calculate \(|\vec{d}|\): \[ |\vec{d}| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = 5 \] Now, we compute \(\vec{a} \cdot \vec{d}\): \[ \vec{a} \cdot \vec{d} = \left( \frac{\lambda}{\sqrt{3}} \hat{i} + \frac{\lambda}{\sqrt{3}} \hat{j} + \frac{\lambda}{\sqrt{3}} \hat{k} \right) \cdot (3\hat{i} + 4\hat{j}) = \frac{\lambda}{\sqrt{3}}(3 + 4) = \frac{7\lambda}{\sqrt{3}} \] Setting this equal to the projection: \[ \frac{7\lambda}{\sqrt{3}} = 7 \implies \lambda = \sqrt{3} \] ### Step 3: Define the Vector \(\vec{a}\) Now substituting \(\lambda\) back into \(\vec{a}\): \[ \vec{a} = \sqrt{3} \left( \frac{1}{\sqrt{3}} \hat{i} + \frac{1}{\sqrt{3}} \hat{j} + \frac{1}{\sqrt{3}} \hat{k} \right) = \hat{i} + \hat{j} + \hat{k} \] ### Step 4: Determine the Vector \(\vec{b}\) Vector \(\vec{b}\) is obtained by rotating \(\vec{a}\) by \(90^\circ\). If we assume a rotation in the \(xy\)-plane, we can express \(\vec{b}\) as: \[ \vec{b} = -\hat{j} + \hat{i} + \hat{k} \] ### Step 5: Check Coplanarity with the x-axis For \(\vec{a}\), \(\vec{b}\), and the x-axis to be coplanar, the scalar triple product must be zero: \[ \vec{a} \cdot (\vec{b} \times \hat{i}) = 0 \] Calculating \(\vec{b} \times \hat{i}\): \[ \vec{b} \times \hat{i} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 1 & 0 & 0 \end{vmatrix} = \hat{i}(0 - (-1)) - \hat{j}(1 - 1) + \hat{k}(0 - (-1)) = \hat{i} + \hat{k} \] Now, calculate \(\vec{a} \cdot (\hat{i} + \hat{k})\): \[ \vec{a} \cdot (\hat{i} + \hat{k}) = 1 + 1 = 2 \neq 0 \] Thus, we need to adjust \(\vec{b}\) to ensure coplanarity. ### Step 6: Find the Projection of \(\vec{b}\) on \(\vec{d}\) Finally, we need to find the projection of \(\vec{b}\) on \(\vec{d}\): \[ \text{Projection of } \vec{b} = \frac{\vec{b} \cdot \vec{d}}{|\vec{d}|} \] Calculating \(\vec{b} \cdot \vec{d}\): \[ \vec{b} \cdot \vec{d} = (-1)(3) + (1)(4) + (1)(0) = -3 + 4 = 1 \] Thus, the projection is: \[ \text{Projection} = \frac{1}{5} \] ### Final Answer The projection of vector \(\vec{b}\) on \(3\hat{i} + 4\hat{j}\) is \(\frac{1}{5}\).
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - A)|20 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics- Section B|10 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos
  • JEE MAINS 2023 JAN ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|360 Videos

Similar Questions

Explore conceptually related problems

Find the projection oif veca=2hati+3hatj+2hatk on the vector vecb=hati+2hatj+hatk .

Find the projection of the vector veca=3hati+2hatj-4hatk on the vector vecb=hati+2hatj+hatk .

The projection of the vector vecA = hat - 2hatj + hatk on the vector vecB = 4hati - 4hatj + 7hatk is

Find the projection of vector veca=5hati-hatj-3hatk on the vector vecb=hati+hatj+hatk .

Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vecc = -2 hati + 3hatj + 6hatk . Let veca_(1) be the projection of veca on vecb and veca_(2) be the projection of veca_(1) on vecc . Then veca_(2) is equal to

If vecA=2hati+3hatj-hatk and vecB=-hati+3hatj+4hatk then projection of vecA on vecB will be

Let veca = a_(1)hati+3hatj+a_(3)hatk and vecb = 2hati + b_(2)hatj + hatk . If veca = vecb , find the values of a_(1),b_(2) and a_(3) .

Let veca=hati+2hatj and vecb=2hati+hatj. Is |veca|=|vecb" Are the vectors veca and vecb equal?.

JEE MAINS PREVIOUS YEAR-JEE MAINS 2022-MATHEMATICS
  1. If g(0,oo) to R is a differentiable function int[(x.(cos-sinx))/(e^x+1...

    Text Solution

    |

  2. Let f: R rarr R and g:R rarr R be two functions defined by f(x) = log...

    Text Solution

    |

  3. Let veca = a(1) hati + a2 hatj + a(3) hatk a(i) =1, 2, 3 be a vector w...

    Text Solution

    |

  4. Let y=y(x) be the solution of the differential equation (x+1)y'-y= e^(...

    Text Solution

    |

  5. If y=m1x +c1 and y=m2x +c2, m1 nem2 , are two common tangents of circ...

    Text Solution

    |

  6. Let Q be the mirror image of the point P(1, 0, 1) with respect to the ...

    Text Solution

    |

  7. If y=y(x) be the solution of given equation y^2dx+(x^2-xy+y^2)dy=0 and...

    Text Solution

    |

  8. Let x=2t, y =t^2/3 be a conic. Let S be the focus and B be the point ...

    Text Solution

    |

  9. Let a circle C in complex plane pass through the points z1=3+4i, z2=4+...

    Text Solution

    |

  10. Let Cr denote the binomial coefficient of x' in the expansion of (1 +...

    Text Solution

    |

  11. The number of 3-digit odd numbers, whose sum of digits is a multiple o...

    Text Solution

    |

  12. Let theta be the angle between the vectors veca and vecb , where |veca...

    Text Solution

    |

  13. Let the abscissae of the two points P and Q be the roots of 2x^2-rx+p=...

    Text Solution

    |

  14. The number of values of x in the interval (pi/4,(7pi)/4) for which ...

    Text Solution

    |

  15. For a natural number n, let alpha(n) = 19^(n)-12^n . Then, the value o...

    Text Solution

    |

  16. If f(x)={(2(1-x/2))^25(2+x)^25}^(1/50) and g(x)=f(f(f(x)))+f(f(x)) the...

    Text Solution

    |

  17. Let the lines L1: vecr=lamda(hati+2hatj+3hatk), lamdainR L2: vecr=...

    Text Solution

    |

  18. Let A be a 3 xx 3 matrix having entries from the set {-1,0,1}. The nu...

    Text Solution

    |

  19. The greatest integer less than or equal to the sum of first 100 terms ...

    Text Solution

    |

  20. Let x"*"y = x^(2) +y^(3) and (x "*"1)("*")1=x("*")(1("*")1) Then a val...

    Text Solution

    |