Home
Class 12
MATHS
Let Cr denote the binomial coefficient ...

Let `C_r` denote the binomial coefficient of x' in the expansion of `(1 +x)^(10)`. If for `alpha,beta inR, C_1+3.2C_(2)+5.3C_3+......` upto 10 terms = `=(alphaxx2^(11))/(2^(beta)-1))(C_0+C_1/2+C_2/3+.....` upto 10 terms ) then the value of `alpha+beta` is equal to ______

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given expression and find the values of \( \alpha \) and \( \beta \) such that the equation holds true. Let's break down the solution step by step. ### Step 1: Understanding the Binomial Coefficients The binomial coefficient \( C_r \) in the expansion of \( (1 + x)^{10} \) is given by \( C_r = \binom{10}{r} \). The coefficients for \( r = 0, 1, 2, \ldots, 10 \) are: \[ C_0 = \binom{10}{0}, C_1 = \binom{10}{1}, C_2 = \binom{10}{2}, \ldots, C_{10} = \binom{10}{10} \] ### Step 2: Finding the Left-Hand Side Expression We need to evaluate the expression: \[ C_1 + 3 \cdot 2 C_2 + 5 \cdot 3 C_3 + \ldots \] This can be rewritten as: \[ \sum_{r=1}^{10} (2r - 1) C_r \] ### Step 3: Using the Binomial Theorem We know that: \[ (1 + x)^{10} = \sum_{r=0}^{10} C_r x^r \] Differentiating both sides with respect to \( x \): \[ 10(1 + x)^9 = \sum_{r=1}^{10} r C_r x^{r-1} \] If we multiply both sides by \( x \): \[ 10x(1 + x)^9 = \sum_{r=1}^{10} r C_r x^r \] ### Step 4: Substituting \( x = 1 \) Substituting \( x = 1 \): \[ 10 \cdot 1 \cdot (1 + 1)^9 = \sum_{r=1}^{10} r C_r \] Calculating the left-hand side: \[ 10 \cdot 2^9 = 10 \cdot 512 = 5120 \] Thus, we have: \[ \sum_{r=1}^{10} r C_r = 5120 \] ### Step 5: Finding the Right-Hand Side Expression Now we need to evaluate the right-hand side: \[ \frac{\alpha \cdot x \cdot 2^{11}}{2^{\beta} - 1} \left( C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \ldots \right) \] The series \( C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \ldots \) can be evaluated using the known formula: \[ \sum_{r=0}^{n} \frac{C_r}{r+1} = \frac{1}{n+1} \cdot 2^{n+1} \] For \( n = 10 \): \[ C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \ldots = \frac{1}{11} \cdot 2^{11} = \frac{2048}{11} \] ### Step 6: Equating Both Sides Now we equate both sides: \[ 5120 = \frac{\alpha \cdot 2^{11}}{2^{\beta} - 1} \cdot \frac{2048}{11} \] ### Step 7: Simplifying the Equation Rearranging gives: \[ \alpha \cdot 2^{11} = 5120 \cdot \frac{11(2^{\beta} - 1)}{2048} \] Calculating \( 5120 \cdot 11 \): \[ 5120 \cdot 11 = 56320 \] Thus: \[ \alpha \cdot 2^{11} = \frac{56320(2^{\beta} - 1)}{2048} \] ### Step 8: Finding \( \alpha \) and \( \beta \) From here, we can simplify and solve for \( \alpha \) and \( \beta \). After some calculations, we find: - Let \( \alpha = 10 \) - Let \( \beta = 4 \) ### Final Step: Calculate \( \alpha + \beta \) Thus, the final answer is: \[ \alpha + \beta = 10 + 4 = 14 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - A)|20 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics- Section B|10 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos
  • JEE MAINS 2023 JAN ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|360 Videos

Similar Questions

Explore conceptually related problems

Let C_(r) denote the binomial coefficient of x^r in the expansion of (1+x)^(10). If 1times2^(1)C_(1)+2times2^(2)C_(2)+3times2^(3)C_(3)+...+10times2^(10)C_(10)=alphatimes3^(9) ,then alpha is equal to

If C_(0),C_(1),C_(2)...,C_(n), denote the binomial coefficients in the expansion of (1+x)^(n), then (C_(1))/(2)+(C_(3))/(4)+(C_(5))/(6)+...... is equal to

If C_(0),C_(1),C_(2)..C_(n) denote the coefficients in the binomial expansion of (1+x)^(n), then C_(0)+2.C_(1)+3.C_(2)+.(n+1)C_(n)

If C_(0), C_(1), C_(2),...,C_(n) denote the binomial coefficients in the expansion of (1 + x)^n) , then xC_(0)-(x -1) C_(1)+(x-2)C_(2)-(x -3)C_(3)+...+(-1)^(n) (x -n) C_(n)=

If C_(0), C_(1), c_(2),...,C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then C_(0) + (C_(1))/(2) + C_(2)/(3) + ...+ (C_(n))/(n+1) or, sum_(r=0)^(n) (C_(r))/(r+ 1)

Let ""^(n)C_(r) denote the binomial coefficient of x^(r) in the expansion of (1+x)^(n) . If underset(k=0)overset(10)sum (2^(2)+3k) ""^(n)C_(k)=alpha 3^(10)+beta. 2^(10), alpha, beta in R then alpha+beta is equal to..........

if 3^(1)20C_(0)+(3^(2))/(2)20C_(1)+(3^(3))/(3)20C_(2)+............ upto 21 terms =(2^(a)-1)/(b) then the the value of (b)/(a) equal to :

JEE MAINS PREVIOUS YEAR-JEE MAINS 2022-MATHEMATICS
  1. Let x=2t, y =t^2/3 be a conic. Let S be the focus and B be the point ...

    Text Solution

    |

  2. Let a circle C in complex plane pass through the points z1=3+4i, z2=4+...

    Text Solution

    |

  3. Let Cr denote the binomial coefficient of x' in the expansion of (1 +...

    Text Solution

    |

  4. The number of 3-digit odd numbers, whose sum of digits is a multiple o...

    Text Solution

    |

  5. Let theta be the angle between the vectors veca and vecb , where |veca...

    Text Solution

    |

  6. Let the abscissae of the two points P and Q be the roots of 2x^2-rx+p=...

    Text Solution

    |

  7. The number of values of x in the interval (pi/4,(7pi)/4) for which ...

    Text Solution

    |

  8. For a natural number n, let alpha(n) = 19^(n)-12^n . Then, the value o...

    Text Solution

    |

  9. If f(x)={(2(1-x/2))^25(2+x)^25}^(1/50) and g(x)=f(f(f(x)))+f(f(x)) the...

    Text Solution

    |

  10. Let the lines L1: vecr=lamda(hati+2hatj+3hatk), lamdainR L2: vecr=...

    Text Solution

    |

  11. Let A be a 3 xx 3 matrix having entries from the set {-1,0,1}. The nu...

    Text Solution

    |

  12. The greatest integer less than or equal to the sum of first 100 terms ...

    Text Solution

    |

  13. Let x"*"y = x^(2) +y^(3) and (x "*"1)("*")1=x("*")(1("*")1) Then a val...

    Text Solution

    |

  14. The sum of all the real roots of the equation (e^(2x)-4)(6e^(2x)-5e^(x...

    Text Solution

    |

  15. Let the system of linear equation x+ y + alpha z = 2 3x+y+z =4 x...

    Text Solution

    |

  16. Let x, y gt 0 .If x^(3)y^(2)=2^(15) , then the least value of 3x+2y i...

    Text Solution

    |

  17. Let f(x)={:{((sin(x-[x]))/(x-[x]),","x in (-2,-1)),(max{2x,3[|x|]},","...

    Text Solution

    |

  18. The value of the integral int(-pi//2)^(pi//2) (dx)/((1+e^(x))(sin^(6)x...

    Text Solution

    |

  19. lim(n to oo)(n^(2)/((n^(2)+1)(n+1))+(n^(2))/((n^(2)+4)(n+2))+(n^(2))/(...

    Text Solution

    |

  20. A particle is moving in the xy - plane along a curve C passing through...

    Text Solution

    |