Home
Class 12
MATHS
Let theta be the angle between the vecto...

Let `theta` be the angle between the vectors `veca and vecb` , where `|veca| = 4 , |vecb| =3 ` and `theta in (pi/4, pi/3)` Then `|(veca-vecb)xx(veca+vecb)|^2+4(veca.vecb)^2` is equal to ______

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( |(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b})|^2 + 4(\vec{a} \cdot \vec{b})^2 \). ### Step 1: Calculate the cross product We start by using the property of the cross product: \[ |(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b})|^2 = |(\vec{a} \times \vec{a}) + (\vec{a} \times \vec{b}) - (\vec{b} \times \vec{a}) - (\vec{b} \times \vec{b})|^2 \] Since the cross product of any vector with itself is zero, we have: \[ |(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b})|^2 = |0 + \vec{a} \times \vec{b} - \vec{b} \times \vec{a} + 0|^2 = |2(\vec{a} \times \vec{b})|^2 \] Thus, \[ |(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b})|^2 = 4|\vec{a} \times \vec{b}|^2 \] ### Step 2: Calculate the dot product Next, we need to calculate \( 4(\vec{a} \cdot \vec{b})^2 \). The dot product can be expressed as: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(\theta) \] Given that \( |\vec{a}| = 4 \) and \( |\vec{b}| = 3 \), we have: \[ \vec{a} \cdot \vec{b} = 4 \cdot 3 \cdot \cos(\theta) = 12 \cos(\theta) \] Thus, \[ 4(\vec{a} \cdot \vec{b})^2 = 4(12 \cos(\theta))^2 = 576 \cos^2(\theta) \] ### Step 3: Combine the results Now we combine the results from Step 1 and Step 2: \[ |(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b})|^2 + 4(\vec{a} \cdot \vec{b})^2 = 4|\vec{a} \times \vec{b}|^2 + 576 \cos^2(\theta) \] ### Step 4: Calculate \( |\vec{a} \times \vec{b}|^2 \) The magnitude of the cross product can be calculated as: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin(\theta) = 4 \cdot 3 \cdot \sin(\theta) = 12 \sin(\theta) \] Thus, \[ |\vec{a} \times \vec{b}|^2 = (12 \sin(\theta))^2 = 144 \sin^2(\theta) \] Now substituting this back, we have: \[ 4|\vec{a} \times \vec{b}|^2 = 4 \cdot 144 \sin^2(\theta) = 576 \sin^2(\theta) \] ### Step 5: Final Expression Now we can combine everything: \[ 576 \sin^2(\theta) + 576 \cos^2(\theta) = 576(\sin^2(\theta) + \cos^2(\theta)) = 576 \cdot 1 = 576 \] ### Final Answer Thus, the final value is: \[ \boxed{576} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - A)|20 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics- Section B|10 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos
  • JEE MAINS 2023 JAN ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|360 Videos

Similar Questions

Explore conceptually related problems

The angle between vectors (vecA xx vecB) and (vecB xx vecA) is :

what is the angle between veca and vecb, if veca. vecb = 3 and | veca xx vecb| = 3 sqrt3.

If |vecA|= 4, |vecB|=3 and theta= 60^@ in the figure . Find vecA.vecB

If theta is the angle between unit vectors vecA and vecB , then ((1-vecA.vecB))/(1+vecA.vecB)) is equal to

Find |veca-vecb| , if two vectors veca and vecb are such that |veca| = 2,|vecb|=3 and veca.vecb = 4 .

vectors veca and vecb are inclined at an angle theta = 60^(@). " If " |veca|=1, |vecb| =2 , " then " [ (veca + 3vecb) xx ( 3 veca -vecb)] ^(2) is equal to

Find |veca-vecb| , if two vectors veca and vecb are such that |veca|=2,|vecb|=3 and veca.vecb=4 .

Find |veca-vecb| , if two vector veca and vecb are such that |veca|=4,|vecb|=5 and veca.vecb=3

For three non - zero vectors veca, vecb and vecc , if [(veca, vecb , vecc)]=4 , then [(vecaxx(vecb+2vecc), vecbxx(vecc-3veca), vecc xx(3veca+vecb))] is equal to

Vectors veca and vec b are inclined at an angle theta = 120^@ . If |veca| = |vecb| = 2 , then [(veca + 3vecb) xx (3veca + vecb)]^2 is equal to

JEE MAINS PREVIOUS YEAR-JEE MAINS 2022-MATHEMATICS
  1. Let Cr denote the binomial coefficient of x' in the expansion of (1 +...

    Text Solution

    |

  2. The number of 3-digit odd numbers, whose sum of digits is a multiple o...

    Text Solution

    |

  3. Let theta be the angle between the vectors veca and vecb , where |veca...

    Text Solution

    |

  4. Let the abscissae of the two points P and Q be the roots of 2x^2-rx+p=...

    Text Solution

    |

  5. The number of values of x in the interval (pi/4,(7pi)/4) for which ...

    Text Solution

    |

  6. For a natural number n, let alpha(n) = 19^(n)-12^n . Then, the value o...

    Text Solution

    |

  7. If f(x)={(2(1-x/2))^25(2+x)^25}^(1/50) and g(x)=f(f(f(x)))+f(f(x)) the...

    Text Solution

    |

  8. Let the lines L1: vecr=lamda(hati+2hatj+3hatk), lamdainR L2: vecr=...

    Text Solution

    |

  9. Let A be a 3 xx 3 matrix having entries from the set {-1,0,1}. The nu...

    Text Solution

    |

  10. The greatest integer less than or equal to the sum of first 100 terms ...

    Text Solution

    |

  11. Let x"*"y = x^(2) +y^(3) and (x "*"1)("*")1=x("*")(1("*")1) Then a val...

    Text Solution

    |

  12. The sum of all the real roots of the equation (e^(2x)-4)(6e^(2x)-5e^(x...

    Text Solution

    |

  13. Let the system of linear equation x+ y + alpha z = 2 3x+y+z =4 x...

    Text Solution

    |

  14. Let x, y gt 0 .If x^(3)y^(2)=2^(15) , then the least value of 3x+2y i...

    Text Solution

    |

  15. Let f(x)={:{((sin(x-[x]))/(x-[x]),","x in (-2,-1)),(max{2x,3[|x|]},","...

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (dx)/((1+e^(x))(sin^(6)x...

    Text Solution

    |

  17. lim(n to oo)(n^(2)/((n^(2)+1)(n+1))+(n^(2))/((n^(2)+4)(n+2))+(n^(2))/(...

    Text Solution

    |

  18. A particle is moving in the xy - plane along a curve C passing through...

    Text Solution

    |

  19. Let the maximum area of the triangle that can be inscribed in the elli...

    Text Solution

    |

  20. Let the area of the triangle with vertices A(1,alpha) ,B(alpha,0)and C...

    Text Solution

    |