Home
Class 12
MATHS
The number of values of x in the inter...

The number of values of x in the interval `(pi/4,(7pi)/4)` for which `14"cosec"^(2) x – 2sin^2x = 21 - 4 cos^(2)x` holds, is _______

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 14 \csc^2 x - 2 \sin^2 x = 21 - 4 \cos^2 x \) for the number of values of \( x \) in the interval \( \left(\frac{\pi}{4}, \frac{7\pi}{4}\right) \), we can follow these steps: ### Step 1: Rewrite the equation in terms of sine and cosine We know that \( \csc^2 x = \frac{1}{\sin^2 x} \) and \( \cos^2 x = 1 - \sin^2 x \). Therefore, we can rewrite the equation as: \[ 14 \frac{1}{\sin^2 x} - 2 \sin^2 x = 21 - 4(1 - \sin^2 x) \] ### Step 2: Simplify the equation Substituting \( \cos^2 x \) gives: \[ 14 \frac{1}{\sin^2 x} - 2 \sin^2 x = 21 - 4 + 4 \sin^2 x \] This simplifies to: \[ 14 \frac{1}{\sin^2 x} - 2 \sin^2 x = 17 + 4 \sin^2 x \] Combining like terms, we have: \[ 14 \frac{1}{\sin^2 x} - 6 \sin^2 x = 17 \] ### Step 3: Multiply through by \( \sin^2 x \) To eliminate the fraction, multiply the entire equation by \( \sin^2 x \): \[ 14 - 6 \sin^4 x = 17 \sin^2 x \] Rearranging gives us: \[ 6 \sin^4 x + 17 \sin^2 x - 14 = 0 \] ### Step 4: Let \( t = \sin^2 x \) Let \( t = \sin^2 x \). The equation becomes: \[ 6t^2 + 17t - 14 = 0 \] ### Step 5: Solve the quadratic equation Using the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ t = \frac{-17 \pm \sqrt{17^2 - 4 \cdot 6 \cdot (-14)}}{2 \cdot 6} \] Calculating the discriminant: \[ 17^2 = 289, \quad 4 \cdot 6 \cdot 14 = 336 \quad \Rightarrow \quad 289 + 336 = 625 \] Thus, \[ t = \frac{-17 \pm 25}{12} \] Calculating the two possible values: 1. \( t = \frac{8}{12} = \frac{2}{3} \) 2. \( t = \frac{-42}{12} = -3.5 \) (not valid since \( t \) must be non-negative) ### Step 6: Find \( \sin x \) Since \( t = \sin^2 x \), we have: \[ \sin^2 x = \frac{2}{3} \quad \Rightarrow \quad \sin x = \pm \sqrt{\frac{2}{3}} \] ### Step 7: Determine the values of \( x \) The solutions for \( \sin x = \sqrt{\frac{2}{3}} \) and \( \sin x = -\sqrt{\frac{2}{3}} \) in the interval \( \left(\frac{\pi}{4}, \frac{7\pi}{4}\right) \) are: - For \( \sin x = \sqrt{\frac{2}{3}} \): - \( x = \arcsin\left(\sqrt{\frac{2}{3}}\right) \) - \( x = \pi - \arcsin\left(\sqrt{\frac{2}{3}}\right) \) - For \( \sin x = -\sqrt{\frac{2}{3}} \): - \( x = \frac{3\pi}{2} + \arcsin\left(\sqrt{\frac{2}{3}}\right) \) - \( x = \frac{3\pi}{2} - \arcsin\left(\sqrt{\frac{2}{3}}\right) \) ### Step 8: Count the solutions In the interval \( \left(\frac{\pi}{4}, \frac{7\pi}{4}\right) \): - The two solutions from \( \sin x = \sqrt{\frac{2}{3}} \) are valid. - The two solutions from \( \sin x = -\sqrt{\frac{2}{3}} \) are also valid. Thus, the total number of solutions is \( 4 \). ### Final Answer The number of values of \( x \) in the interval \( \left(\frac{\pi}{4}, \frac{7\pi}{4}\right) \) is **4**.
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - A)|20 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics- Section B|10 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos
  • JEE MAINS 2023 JAN ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|360 Videos

Similar Questions

Explore conceptually related problems

f(x)=cos2x, interval [-(pi)/(4),(pi)/(4)]

The value of sin x sin2x sin4x when x=(2 pi)/(7)

The number of values of x in [0, 2 pi] that satisfy "cot" x -"cosec"x = 2 "sin" x , is

The number of solutions of the equation 4 sin^(2) x + tan^(2)x + cot^(2)x + "cosec"^(2)x = 6 in [0, 2 pi]

The number of values of x in [-2pi, 2pi] which satisfy the equation "cosec x"=1+cot x is equal to

int_(-pi//4)^(pi//4) "cosec"^(2) x dx

Find the number of values of x in [-pi/4, pi/4] satisfying the equation sin^(2) (2 cos^(-1) (tan x))=1

The number of values of x satisfying cos^(2)x-cot^(2)x=1 for x in[-pi,4 pi], is

The number of x in [0, 2pi] for which |sqrt(2"sin"^(4)x + 18"cos"^(2) x) -sqrt(2"cos"^(4)x + 18"sin"^(2)x)| = 1, is

The number of solutions of the equation 4sin^(2)x+tan^(2)x+cot^(2)x+"cosec"^(2)x=6" in " [0, 2pi] :

JEE MAINS PREVIOUS YEAR-JEE MAINS 2022-MATHEMATICS
  1. Let theta be the angle between the vectors veca and vecb , where |veca...

    Text Solution

    |

  2. Let the abscissae of the two points P and Q be the roots of 2x^2-rx+p=...

    Text Solution

    |

  3. The number of values of x in the interval (pi/4,(7pi)/4) for which ...

    Text Solution

    |

  4. For a natural number n, let alpha(n) = 19^(n)-12^n . Then, the value o...

    Text Solution

    |

  5. If f(x)={(2(1-x/2))^25(2+x)^25}^(1/50) and g(x)=f(f(f(x)))+f(f(x)) the...

    Text Solution

    |

  6. Let the lines L1: vecr=lamda(hati+2hatj+3hatk), lamdainR L2: vecr=...

    Text Solution

    |

  7. Let A be a 3 xx 3 matrix having entries from the set {-1,0,1}. The nu...

    Text Solution

    |

  8. The greatest integer less than or equal to the sum of first 100 terms ...

    Text Solution

    |

  9. Let x"*"y = x^(2) +y^(3) and (x "*"1)("*")1=x("*")(1("*")1) Then a val...

    Text Solution

    |

  10. The sum of all the real roots of the equation (e^(2x)-4)(6e^(2x)-5e^(x...

    Text Solution

    |

  11. Let the system of linear equation x+ y + alpha z = 2 3x+y+z =4 x...

    Text Solution

    |

  12. Let x, y gt 0 .If x^(3)y^(2)=2^(15) , then the least value of 3x+2y i...

    Text Solution

    |

  13. Let f(x)={:{((sin(x-[x]))/(x-[x]),","x in (-2,-1)),(max{2x,3[|x|]},","...

    Text Solution

    |

  14. The value of the integral int(-pi//2)^(pi//2) (dx)/((1+e^(x))(sin^(6)x...

    Text Solution

    |

  15. lim(n to oo)(n^(2)/((n^(2)+1)(n+1))+(n^(2))/((n^(2)+4)(n+2))+(n^(2))/(...

    Text Solution

    |

  16. A particle is moving in the xy - plane along a curve C passing through...

    Text Solution

    |

  17. Let the maximum area of the triangle that can be inscribed in the elli...

    Text Solution

    |

  18. Let the area of the triangle with vertices A(1,alpha) ,B(alpha,0)and C...

    Text Solution

    |

  19. The number of distinct real roots equation x^(7) - 7x-2=0 is

    Text Solution

    |

  20. A random variable X has the following probability distribution Th...

    Text Solution

    |