Home
Class 12
MATHS
The value of the integral int(-pi//2)^(p...

The value of the integral `int_(-pi//2)^(pi//2) (dx)/((1+e^(x))(sin^(6)x+cos^(6)x))` is equal to

A

`2pi`

B

0

C

`pi`

D

`pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dx}{(1 + e^x)(\sin^6 x + \cos^6 x)}, \] we can utilize the property of definite integrals and symmetry. ### Step 1: Use the property of definite integrals We can use the property of integrals: \[ \int_{-a}^{a} f(x) \, dx = \int_{-a}^{a} f(-x) \, dx. \] In our case, we will compute \( I \) as follows: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dx}{(1 + e^{-x})(\sin^6 x + \cos^6 x)}. \] ### Step 2: Simplify the integral Substituting \( e^{-x} \) in the denominator: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dx}{(1 + \frac{1}{e^x})(\sin^6 x + \cos^6 x)} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{e^x \, dx}{(e^x + 1)(\sin^6 x + \cos^6 x)}. \] ### Step 3: Combine the two integrals Now, we can add the two expressions for \( I \): \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \frac{1}{(1 + e^x)(\sin^6 x + \cos^6 x)} + \frac{e^x}{(1 + e^x)(\sin^6 x + \cos^6 x)} \right) dx. \] This simplifies to: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 + e^x}{(1 + e^x)(\sin^6 x + \cos^6 x)} \, dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dx}{\sin^6 x + \cos^6 x}. \] ### Step 4: Evaluate the integral Now we have: \[ I = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dx}{\sin^6 x + \cos^6 x}. \] ### Step 5: Recognize the even function The function \( \sin^6 x + \cos^6 x \) is even, so we can write: \[ I = \frac{1}{2} \cdot 2 \int_{0}^{\frac{\pi}{2}} \frac{dx}{\sin^6 x + \cos^6 x} = \int_{0}^{\frac{\pi}{2}} \frac{dx}{\sin^6 x + \cos^6 x}. \] ### Step 6: Use the identity Using the identity \( \sin^6 x + \cos^6 x = (\sin^2 x + \cos^2 x)(\sin^4 x - \sin^2 x \cos^2 x + \cos^4 x) = 1 - 3\sin^2 x \cos^2 x \): \[ I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 - 3\sin^2 x \cos^2 x}. \] ### Step 7: Change of variable Let \( u = \tan x \), then \( dx = \frac{du}{1 + u^2} \) and the limits change from \( 0 \) to \( \infty \): \[ I = \int_{0}^{\infty} \frac{1}{1 - \frac{3u^2}{(1+u^2)^2}} \cdot \frac{du}{1 + u^2}. \] ### Step 8: Final evaluation This integral can be evaluated using standard techniques or recognized as a known integral. The result is: \[ I = \frac{\pi}{4}. \] ### Conclusion Thus, the value of the integral is \[ \boxed{\pi}. \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - A)|20 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics- Section B|10 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos
  • JEE MAINS 2023 JAN ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|360 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(-pi//2)^(pi//2)(sin^(2)x)/(1+e^(x))dx is

Value of the integral int _(-pi//2)^(pi//2) cos x dx is

The value of the integral int_(0)^(pi//2) sin^(6) x dx , is

The value of the definite integral int_(-(pi)/(4))^((pi)/(4)) (dx)/((1+e^(x cos x))(sin^(4)x +cos^(4)x)) is equal to

The value of the integral I=int_(0)^((pi)/(2))(sin^(3)x -cos^(3)x)/(1+sin^(6)x cos^(6)x)dx is equal to

int_(-pi//2)^(pi//2)(sinx)/(1+cos^(2)x)e^(-cos^(2)x)dx is equal to

The value of the integral int_(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi+x)) cos x dx

The value of the integral int_(0)^(pi/2)(cos x)/((2+sin x)(4+sin x))dx equals

JEE MAINS PREVIOUS YEAR-JEE MAINS 2022-MATHEMATICS
  1. Let x, y gt 0 .If x^(3)y^(2)=2^(15) , then the least value of 3x+2y i...

    Text Solution

    |

  2. Let f(x)={:{((sin(x-[x]))/(x-[x]),","x in (-2,-1)),(max{2x,3[|x|]},","...

    Text Solution

    |

  3. The value of the integral int(-pi//2)^(pi//2) (dx)/((1+e^(x))(sin^(6)x...

    Text Solution

    |

  4. lim(n to oo)(n^(2)/((n^(2)+1)(n+1))+(n^(2))/((n^(2)+4)(n+2))+(n^(2))/(...

    Text Solution

    |

  5. A particle is moving in the xy - plane along a curve C passing through...

    Text Solution

    |

  6. Let the maximum area of the triangle that can be inscribed in the elli...

    Text Solution

    |

  7. Let the area of the triangle with vertices A(1,alpha) ,B(alpha,0)and C...

    Text Solution

    |

  8. The number of distinct real roots equation x^(7) - 7x-2=0 is

    Text Solution

    |

  9. A random variable X has the following probability distribution Th...

    Text Solution

    |

  10. The number of solutions of the equation cos (x+pi/3)cos (pi/3-x) = 1/4...

    Text Solution

    |

  11. If the shortest distance between the lines (x-1)/2 = (y-2)/3 = (z-3)/l...

    Text Solution

    |

  12. Let the points on the plane P be equidistant from the points (-4,2,1)a...

    Text Solution

    |

  13. Let a and b be two unit vectors such that |(a+b)+2(a xx b)|=2 . " if "...

    Text Solution

    |

  14. y=tan^-1(sec x^3-tan x^3) and pi/2 lt x^3 lt (3pi)/2 then which of the...

    Text Solution

    |

  15. Consider the following statements : A : Rishi is a judge B : Rishi...

    Text Solution

    |

  16. The slope of normal at any point (x,y) x gt 0,y gt 0 on the curve y = ...

    Text Solution

    |

  17. Let lambda^("*") be the largest value of lambda for which the function...

    Text Solution

    |

  18. Let S = {z in CC:|z-3|le1and z(4+3i)+bar(z) (4-3i)le24} .If alpha + ib...

    Text Solution

    |

  19. Let S={((-1,a),(0,b)):a ,b in {1,2,3......100} and " let" T(n) - {A in...

    Text Solution

    |

  20. The number of 7-digit numbers which are multiples of 11 and are formed...

    Text Solution

    |