Home
Class 12
MATHS
lim(n to oo)(n^(2)/((n^(2)+1)(n+1))+(n^(...

`lim_(n to oo)(n^(2)/((n^(2)+1)(n+1))+(n^(2))/((n^(2)+4)(n+2))+(n^(2))/((n^(2)+9)(n+3))+....+(n^(2))/((n^(2)+n^(2))(n+n)))` is equal to

A

`pi/8 +1/4 log_(e )2`

B

`pi/4 +1/8 log_(e )2`

C

`pi/4 -1/8 log_(2)2`

D

`pi/8 +log_(e)sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \left( \frac{n^2}{(n^2+1)(n+1)} + \frac{n^2}{(n^2+4)(n+2)} + \frac{n^2}{(n^2+9)(n+3)} + \ldots + \frac{n^2}{(n^2+n^2)(n+n)} \right), \] we can express this limit as a summation: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{n^2}{(n^2 + r^2)(n + r)}. \] ### Step 1: Factor out \( n^2 \) We can rewrite each term in the summation by factoring out \( n^2 \) from both the numerator and the denominator: \[ \frac{n^2}{(n^2 + r^2)(n + r)} = \frac{1}{\left(1 + \frac{r^2}{n^2}\right)\left(1 + \frac{r}{n}\right)}. \] ### Step 2: Rewrite the limit Now, we can express the limit as: \[ \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} \frac{1}{\left(1 + \frac{r^2}{n^2}\right)\left(1 + \frac{r}{n}\right)}. \] ### Step 3: Recognize the Riemann sum As \( n \to \infty \), the expression inside the summation resembles a Riemann sum for the integral of a function over the interval \([0, 1]\). We can let \( x = \frac{r}{n} \), which implies \( r = nx \) and \( \frac{dr}{n} = dx \): \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n} \frac{1}{\left(1 + x^2\right)\left(1 + x\right)}. \] ### Step 4: Set up the integral Thus, we can express the limit as an integral: \[ \int_{0}^{1} \frac{1}{(1 + x^2)(1 + x)} \, dx. \] ### Step 5: Simplify the integrand We can simplify the integrand: \[ \frac{1}{(1 + x^2)(1 + x)} = \frac{A}{1 + x} + \frac{B}{1 + x^2}. \] Multiplying through by the denominator \( (1 + x)(1 + x^2) \) and equating coefficients, we can find \( A \) and \( B \). ### Step 6: Solve for \( A \) and \( B \) After solving, we find: \[ \int_{0}^{1} \left( \frac{A}{1 + x} + \frac{B}{1 + x^2} \right) \, dx. \] ### Step 7: Evaluate the integral Evaluating the integrals separately: 1. For \( \int \frac{1}{1+x} \, dx \), we get \( \log(1+x) \). 2. For \( \int \frac{1}{1+x^2} \, dx \), we get \( \tan^{-1}(x) \). ### Step 8: Apply limits Evaluating from 0 to 1 gives us: \[ \left[ \log(2) - \log(1) \right] + \left[ \frac{\pi}{4} - 0 \right]. \] ### Final Result Combining these results, we find: \[ \frac{\pi}{4} + \frac{1}{4} \log(2). \] Thus, the limit evaluates to: \[ \frac{\pi}{8} + \frac{1}{4} \log(2). \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - A)|20 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics- Section B|10 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos
  • JEE MAINS 2023 JAN ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|360 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))+...+(n)/(n^(2)))

lim_(n to oo)[(n)/(1+n^(2))+(n)/(4+n^(2))+(n)/(9+n^(2))+…+(1)/(2n^2)]=

lim_(n rarr oo)[(1^(2))/(n^(3))+(2^(2))/(n^(3))+(3^(2))/(n^(3))+...+(n^(2))/(n^(3))]=?

lim_(n rarr oo)[(1)/(n^(2))+(2)/(n^(2))+....+(n)/(n^(2))]

lim_(n to oo) [ 1/(n^2) + 2/(n^2) + … + n/(n^2)]

lim_(n rarr oo)(e^(2n)(n!)^(2))/(2n^(2n+1))

lim_(n to oo)[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+....+(1)/(n)]

lim_(n to oo ) {(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+ (n)/(n^(2)+n^(2))} is equal to

JEE MAINS PREVIOUS YEAR-JEE MAINS 2022-MATHEMATICS
  1. Let f(x)={:{((sin(x-[x]))/(x-[x]),","x in (-2,-1)),(max{2x,3[|x|]},","...

    Text Solution

    |

  2. The value of the integral int(-pi//2)^(pi//2) (dx)/((1+e^(x))(sin^(6)x...

    Text Solution

    |

  3. lim(n to oo)(n^(2)/((n^(2)+1)(n+1))+(n^(2))/((n^(2)+4)(n+2))+(n^(2))/(...

    Text Solution

    |

  4. A particle is moving in the xy - plane along a curve C passing through...

    Text Solution

    |

  5. Let the maximum area of the triangle that can be inscribed in the elli...

    Text Solution

    |

  6. Let the area of the triangle with vertices A(1,alpha) ,B(alpha,0)and C...

    Text Solution

    |

  7. The number of distinct real roots equation x^(7) - 7x-2=0 is

    Text Solution

    |

  8. A random variable X has the following probability distribution Th...

    Text Solution

    |

  9. The number of solutions of the equation cos (x+pi/3)cos (pi/3-x) = 1/4...

    Text Solution

    |

  10. If the shortest distance between the lines (x-1)/2 = (y-2)/3 = (z-3)/l...

    Text Solution

    |

  11. Let the points on the plane P be equidistant from the points (-4,2,1)a...

    Text Solution

    |

  12. Let a and b be two unit vectors such that |(a+b)+2(a xx b)|=2 . " if "...

    Text Solution

    |

  13. y=tan^-1(sec x^3-tan x^3) and pi/2 lt x^3 lt (3pi)/2 then which of the...

    Text Solution

    |

  14. Consider the following statements : A : Rishi is a judge B : Rishi...

    Text Solution

    |

  15. The slope of normal at any point (x,y) x gt 0,y gt 0 on the curve y = ...

    Text Solution

    |

  16. Let lambda^("*") be the largest value of lambda for which the function...

    Text Solution

    |

  17. Let S = {z in CC:|z-3|le1and z(4+3i)+bar(z) (4-3i)le24} .If alpha + ib...

    Text Solution

    |

  18. Let S={((-1,a),(0,b)):a ,b in {1,2,3......100} and " let" T(n) - {A in...

    Text Solution

    |

  19. The number of 7-digit numbers which are multiples of 11 and are formed...

    Text Solution

    |

  20. The sum of all the elements of the set {alpha in {1,2,…….,100}" HCF " ...

    Text Solution

    |