Home
Class 12
MATHS
Let S={((-1,a),(0,b)):a ,b in {1,2,3.......

Let `S={((-1,a),(0,b)):a ,b in {1,2,3......100} and " let" T_(n) - {A in S : A^(n(n+1))=I}` .Then the number of elements in `cap_(n=1)^(100) T_(n)` is _______.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the set \( S \) and the conditions for the matrices in \( T_n \). ### Step 1: Define the Matrix The matrices in the set \( S \) are of the form: \[ A = \begin{pmatrix} -1 & a \\ 0 & b \end{pmatrix} \] where \( a, b \) are integers from 1 to 100. ### Step 2: Determine the Condition for \( T_n \) The set \( T_n \) is defined as: \[ T_n = \{ A \in S : A^{n(n+1)} = I \} \] where \( I \) is the identity matrix. We need to find the values of \( n \) such that \( A^{n(n+1)} = I \). ### Step 3: Calculate \( A^2 \) First, we compute \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} -1 & a \\ 0 & b \end{pmatrix} \cdot \begin{pmatrix} -1 & a \\ 0 & b \end{pmatrix} = \begin{pmatrix} 1 & -a + ab \\ 0 & b^2 \end{pmatrix} \] For \( A^2 = I \), we need: \[ \begin{pmatrix} 1 & -a + ab \\ 0 & b^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] This gives us the equations: 1. \( -a + ab = 0 \) 2. \( b^2 = 1 \) ### Step 4: Solve the Equations From \( b^2 = 1 \), we find \( b = 1 \) (since \( b \) must be in \( \{1, 2, \ldots, 100\} \)). Substituting \( b = 1 \) into the first equation: \[ -a + a \cdot 1 = 0 \implies -a + a = 0 \implies 0 = 0 \] This is always true for any \( a \). ### Step 5: Calculate Higher Powers Next, we calculate \( A^4 \): \[ A^4 = A^2 \cdot A^2 = \begin{pmatrix} 1 & -a + ab \\ 0 & b^2 \end{pmatrix} \cdot \begin{pmatrix} 1 & -a + ab \\ 0 & b^2 \end{pmatrix} \] Substituting \( b = 1 \): \[ A^4 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] This means \( A^4 = I \). ### Step 6: Generalizing the Powers We find that: - \( A^2 = I \) when \( n(n+1) = 2 \) - \( A^4 = I \) when \( n(n+1) = 4 \) - \( A^{12} = I \) when \( n(n+1) = 12 \) ### Step 7: Finding \( n \) We need to find \( n \) such that: - \( n(n+1) = 2 \) gives \( n = 1 \) - \( n(n+1) = 4 \) gives \( n = 2 \) - \( n(n+1) = 12 \) gives \( n = 3 \) ### Step 8: Intersection of \( T_n \) We need to find the intersection \( \bigcap_{n=1}^{100} T_n \). The only valid \( A \) that satisfies all conditions is: \[ A = \begin{pmatrix} -1 & a \\ 0 & 1 \end{pmatrix} \] where \( a \) can take any value from 1 to 100. ### Final Count Thus, the number of elements in \( \bigcap_{n=1}^{100} T_n \) is \( 100 \) (corresponding to the values of \( a \)). ### Answer The number of elements in \( \bigcap_{n=1}^{100} T_n \) is **100**.
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - A)|20 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics- Section B|10 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos
  • JEE MAINS 2023 JAN ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|360 Videos

Similar Questions

Explore conceptually related problems

The sum S_(n) where T_(n)=(-1)^(n)(n^(2)+n+1)/(n!) is

The number of elements in the set {n in {1, 2, 3,…, 100} | (11)^(n) gt (10)^(n) + (9)^(n)} is ________ .

Let f(n) = [(1)/(2) + (n)/(100)] where [n] denotes the integral part of n. Then the value of sum_(n=1)^(100) f(n) is

In a series, if t_n = (n^(2) -1)/(n+1) , then S_6 - S_3= _______.

The sum S_(n) where T_(n) = (-1)^(n) (n^(2) + n +1)/( n!) is

Let t_(n)=n.(n!) Then sum_(n=1)^(15)t_(n) is equal to

Let f(n)=[(1)/(2)+(n)/(100)] where [x] denote the integral part of x. Then the value of sum_(n=1)^(100)f(n) is

Let T_(n) be the n^(th) term of a sequence for n=1,2,3,4... if 4T_(n+1)=T_(n) and T_(5)=(1)/(2560) then the value of sum_(n=1)^(oo)(T_(n)*T_(n+1)) is equal to

JEE MAINS PREVIOUS YEAR-JEE MAINS 2022-MATHEMATICS
  1. Let lambda^("*") be the largest value of lambda for which the function...

    Text Solution

    |

  2. Let S = {z in CC:|z-3|le1and z(4+3i)+bar(z) (4-3i)le24} .If alpha + ib...

    Text Solution

    |

  3. Let S={((-1,a),(0,b)):a ,b in {1,2,3......100} and " let" T(n) - {A in...

    Text Solution

    |

  4. The number of 7-digit numbers which are multiples of 11 and are formed...

    Text Solution

    |

  5. The sum of all the elements of the set {alpha in {1,2,…….,100}" HCF " ...

    Text Solution

    |

  6. The remainder on dividing 1+3+3^(2)+3^(3) +……..+ 3^(2021) " by " 50 i...

    Text Solution

    |

  7. The area (in sq.units ) of the region enclosed between the parabola y^...

    Text Solution

    |

  8. The circle (x-h)^2+(y-k)^2=r^2 toches x-axis at (1,0) "where" k gt 0 ,...

    Text Solution

    |

  9. There are 10 questions in an exam, probability of correctly answering ...

    Text Solution

    |

  10. Let the hyperbola H : (x^(2))/(a^(2))-y^(2)=1 and the ellipse E: 3x^(2...

    Text Solution

    |

  11. Let P(1) be a parabola with vertex (3,2) and focus (4,4) and P(2) be i...

    Text Solution

    |

  12. Let R(1)= {(a,b) in N xx N : |a- b| le 13| and R(2)= {(a, b) in N xx N...

    Text Solution

    |

  13. Let f(x) be a quadratic polynomial such that f(-2) + f(3)= 0. If one o...

    Text Solution

    |

  14. 30 identical candies are distributed among 4 students S1,S2,S3 and S4....

    Text Solution

    |

  15. The term independent of x in the expansion of (1- x^(2) + 3x^(3)) ((5)...

    Text Solution

    |

  16. If n arithmetic means are inserted between a and 100 such that the rat...

    Text Solution

    |

  17. Let f, g: R rarr R be functions defined by f(x)= {([x],x lt 0),(|1-x...

    Text Solution

    |

  18. Let f : R rarr R be a differentiable function such that f((pi)/(4)) = ...

    Text Solution

    |

  19. Let f: R rarr R be a continuous function satisfying f(x)+ f(x+ k) = n,...

    Text Solution

    |

  20. The area of the bounded region enclosed by the curve y= 3 - |x- (1)/(2...

    Text Solution

    |