Home
Class 12
MATHS
lim(trarr0)(1^(1/sin^2t)+2^(1/sin^2t)+.....

`lim_(trarr0)(1^(1/sin^2t)+2^(1/sin^2t)+..n^(1/sin^2t))^(sin^2t)`

A

`n^2`

B

`n^(2) +n`

C

n

D

`(n(n+1))/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \[ \lim_{t \to 0} \left(1^{\frac{1}{\sin^2 t}} + 2^{\frac{1}{\sin^2 t}} + \ldots + n^{\frac{1}{\sin^2 t}}\right)^{\sin^2 t}, \] we will break it down step by step. ### Step 1: Rewrite the expression We start by rewriting the expression inside the limit: \[ S(t) = 1^{\frac{1}{\sin^2 t}} + 2^{\frac{1}{\sin^2 t}} + \ldots + n^{\frac{1}{\sin^2 t}}. \] ### Step 2: Analyze each term as \( t \to 0 \) As \( t \to 0 \), \( \sin^2 t \) approaches 0. Therefore, each term \( k^{\frac{1}{\sin^2 t}} \) (for \( k = 1, 2, \ldots, n \)) behaves as follows: - For \( k = 1 \): \( 1^{\frac{1}{\sin^2 t}} = 1 \). - For \( k > 1 \): \( k^{\frac{1}{\sin^2 t}} \) approaches \( \infty \) since \( k > 1 \) and \( \frac{1}{\sin^2 t} \to \infty \). Thus, \( S(t) \) can be approximated as: \[ S(t) \approx 1 + \infty + \infty + \ldots + \infty = \infty. \] ### Step 3: Rewrite the limit Now, we substitute this back into our limit: \[ \lim_{t \to 0} S(t)^{\sin^2 t} = \lim_{t \to 0} \infty^{\sin^2 t}. \] ### Step 4: Analyze \( \infty^{\sin^2 t} \) As \( t \to 0 \), \( \sin^2 t \to 0 \). The expression \( \infty^{\sin^2 t} \) can be interpreted as \( e^{\sin^2 t \cdot \ln(\infty)} \). Since \( \ln(\infty) \) is undefined, we need to consider the limit more carefully. ### Step 5: Apply the limit properties We can express the limit in terms of \( n \): \[ S(t) = \sum_{k=1}^{n} k^{\frac{1}{\sin^2 t}} \approx n^{\frac{1}{\sin^2 t}} \text{ (dominant term as } t \to 0). \] Thus, we can rewrite: \[ \lim_{t \to 0} S(t)^{\sin^2 t} \approx \lim_{t \to 0} \left(n^{\frac{1}{\sin^2 t}}\right)^{\sin^2 t} = \lim_{t \to 0} n^{\sin^2 t / \sin^2 t} = n^{1} = n. \] ### Final Answer Therefore, the final answer is: \[ \lim_{t \to 0} \left(1^{\frac{1}{\sin^2 t}} + 2^{\frac{1}{\sin^2 t}} + \ldots + n^{\frac{1}{\sin^2 t}}\right)^{\sin^2 t} = n. \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0) {1^(1//sin^(2)x)+2^(1//sin^(2)x)+...+n^(1//sin^(2)x)}^(sin^(2)x) .

Evaluate: lim_(n rarr0)(1^(1/sin^(2)x)+2sin^((1)/(2sin^(2)x))+...+n^(1/sin^(2)x))^(sin^(2)x)

The value of lim_(xrarr0) {1^((1)/(sin^(2)x)+)2^((1)/(sin^(2)x))+3^((1)/(sin^(2)x))+.....+n^((1)/sin^(2)x)}^(sin^2x) , is

lim_ (x rarr0) (1- (1-sin x) (1-sin2x) ^ (2) ... (1-sin nx) ^ (n)) / (x) = 55

lim_(x->0)[1^(1/sin^2x)+2^(1/sin^2x)+...................+n^(1/sin^2x)]^(sin^2x) =

lim_(x rarr0)(t[sin t-t cos t])/(t^(2))

(lim)_(nvecoo)1/x[int_y^a e^(sin^2t))dt-int_(x+y)^a e^(sin^2t))dt-]i se q u a lto (0,1] (b) [1,oo) (0,oo) (d) none of these

The value of lim_(xto0)(1)/(x) int_(0)^(x)(1+ sin 2t)^(1/t) dt equals :

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. The value of sum(r=0)^22 "^(22)Cr "^23Cr is

    Text Solution

    |

  2. Let alpha be a root of the equation (a – c) x^2 + (b – a) x + (c – b) ...

    Text Solution

    |

  3. lim(trarr0)(1^(1/sin^2t)+2^(1/sin^2t)+..n^(1/sin^2t))^(sin^2t)

    Text Solution

    |

  4. The distance of the point (–1, 9,–16) from the plane 2x + 3y – z = 5 m...

    Text Solution

    |

  5. Let N denote the number that turns up then a fair die is rolled. If th...

    Text Solution

    |

  6. Let f (x)={(x^2sin(1/x),x!=0,),(0,x=0,):} then at x = 0

    Text Solution

    |

  7. Let PQR be a triangle. The point A,B and C are on the sides QR, RP and...

    Text Solution

    |

  8. For the positive integers p,q ,r,x^(pq^2)=y^(qr)=z^(p^2r) and r = pq+1...

    Text Solution

    |

  9. tan^(-1)((1+sqrt3)/(3+sqrt3))+sec^-1(sqrt((8+4sqrt3)/(6+3sqrt3))) is e...

    Text Solution

    |

  10. The equation x^2-4x+[x]+3=x[x], where [x] denotes the greatest integer...

    Text Solution

    |

  11. Let p,q in R and (1-sqrt3i)^(200)=2^(199) (p=iq),i=sqrt(-1) then p+q+q...

    Text Solution

    |

  12. If A and B are two non-zero n × n matrices such that A^2 + B = A^2 B, ...

    Text Solution

    |

  13. Let a tangent to the curve y^2 = 24x meet the curve xy =2 at points A ...

    Text Solution

    |

  14. The distance of the point (7,–3,–4) form the plane passing through the...

    Text Solution

    |

  15. The compound statement (~(P^^Q))vv((~P)^^Q)implies((~P)^^(~Q) is equiv...

    Text Solution

    |

  16. The relation R={(a,b): qcd(a,b)=1 , 2a!=b,a,d in z } is :

    Text Solution

    |

  17. Let vecu=veci-vecj-2^k, vec v =2vec i +vecj-vec k ,vecv.vecw=2 and vec...

    Text Solution

    |

  18. Let lambda in R and let the equation E be |x|^2-2|x|+|lambda-3|=0. The...

    Text Solution

    |

  19. A boy needs to select five courses from 12 available courses, out of w...

    Text Solution

    |

  20. The value of 8/pi int(0)^(pi/2)(cosx)^(2023)/((sinx)^(2023)+(cosx)^(20...

    Text Solution

    |