Home
Class 12
MATHS
tan^(-1)((1+sqrt3)/(3+sqrt3))+sec^-1(sqr...

`tan^(-1)((1+sqrt3)/(3+sqrt3))+sec^-1(sqrt((8+4sqrt3)/(6+3sqrt3)))` is equal to

A

`pi/2`

B

`pi/4`

C

`pi/6`

D

`pi/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan^{-1}\left(\frac{1+\sqrt{3}}{3+\sqrt{3}}\right) + \sec^{-1}\left(\sqrt{\frac{8+4\sqrt{3}}{6+3\sqrt{3}}}\right) \), we will break it down into manageable steps. ### Step 1: Simplify the first term \( \tan^{-1}\left(\frac{1+\sqrt{3}}{3+\sqrt{3}}\right) \) We start with the expression inside the \( \tan^{-1} \): \[ \frac{1+\sqrt{3}}{3+\sqrt{3}} \] To simplify this, we can multiply the numerator and the denominator by the conjugate of the denominator: \[ \frac{(1+\sqrt{3})(3-\sqrt{3})}{(3+\sqrt{3})(3-\sqrt{3})} \] Calculating the denominator: \[ (3+\sqrt{3})(3-\sqrt{3}) = 9 - 3 = 6 \] Calculating the numerator: \[ (1+\sqrt{3})(3-\sqrt{3}) = 3 - \sqrt{3} + 3\sqrt{3} - 3 = 2\sqrt{3} \] Thus, we have: \[ \frac{1+\sqrt{3}}{3+\sqrt{3}} = \frac{2\sqrt{3}}{6} = \frac{\sqrt{3}}{3} \] Now we can rewrite the first term: \[ \tan^{-1}\left(\frac{\sqrt{3}}{3}\right) \] ### Step 2: Identify the angle We know that: \[ \tan\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{3} \] Thus: \[ \tan^{-1}\left(\frac{\sqrt{3}}{3}\right) = \frac{\pi}{6} \] ### Step 3: Simplify the second term \( \sec^{-1}\left(\sqrt{\frac{8+4\sqrt{3}}{6+3\sqrt{3}}}\right) \) We simplify the expression inside the \( \sec^{-1} \): \[ \sqrt{\frac{8+4\sqrt{3}}{6+3\sqrt{3}}} \] Calculating the numerator and denominator separately: 1. **Numerator**: \( 8 + 4\sqrt{3} \) 2. **Denominator**: \( 6 + 3\sqrt{3} \) To simplify, we can multiply both the numerator and denominator by the conjugate of the denominator: \[ \frac{(8+4\sqrt{3})(6-3\sqrt{3})}{(6+3\sqrt{3})(6-3\sqrt{3})} \] Calculating the denominator: \[ (6+3\sqrt{3})(6-3\sqrt{3}) = 36 - 27 = 9 \] Calculating the numerator: \[ (8+4\sqrt{3})(6-3\sqrt{3}) = 48 - 24\sqrt{3} + 24\sqrt{3} - 12 = 36 \] Thus, we have: \[ \sqrt{\frac{36}{9}} = \sqrt{4} = 2 \] ### Step 4: Rewrite the second term Now we can rewrite the second term: \[ \sec^{-1}(2) \] ### Step 5: Identify the angle We know that: \[ \sec\left(\frac{\pi}{3}\right) = 2 \] Thus: \[ \sec^{-1}(2) = \frac{\pi}{3} \] ### Step 6: Combine both terms Now we can combine both terms: \[ \tan^{-1}\left(\frac{1+\sqrt{3}}{3+\sqrt{3}}\right) + \sec^{-1}\left(\sqrt{\frac{8+4\sqrt{3}}{6+3\sqrt{3}}}\right) = \frac{\pi}{6} + \frac{\pi}{3} \] ### Step 7: Find a common denominator To add these fractions, we convert \( \frac{\pi}{3} \) to sixths: \[ \frac{\pi}{3} = \frac{2\pi}{6} \] Thus: \[ \frac{\pi}{6} + \frac{2\pi}{6} = \frac{3\pi}{6} = \frac{\pi}{2} \] ### Final Answer The final answer is: \[ \frac{\pi}{2} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

(sqrt(3)+1)^(4)+(sqrt(3)-1)^(4) is equal to

tan^(-1)(sqrt3)-cot^(-1)(-sqrt3)

(sqrt3 -1 )/(sqrt3 +1)

(sqrt(2)(2+sqrt(3)))/(sqrt(3)(sqrt(3)+1))xx(sqrt(2)(2-sqrt(3)))/(sqrt(3)(sqrt(3)-1)) is equal to 3sqrt(2)(b)(sqrt(2))/(3) (c) (2)/(3) (d) (1)/(3)

the value of cos^(-1)sqrt((2)/(3))-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to:

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. Let PQR be a triangle. The point A,B and C are on the sides QR, RP and...

    Text Solution

    |

  2. For the positive integers p,q ,r,x^(pq^2)=y^(qr)=z^(p^2r) and r = pq+1...

    Text Solution

    |

  3. tan^(-1)((1+sqrt3)/(3+sqrt3))+sec^-1(sqrt((8+4sqrt3)/(6+3sqrt3))) is e...

    Text Solution

    |

  4. The equation x^2-4x+[x]+3=x[x], where [x] denotes the greatest integer...

    Text Solution

    |

  5. Let p,q in R and (1-sqrt3i)^(200)=2^(199) (p=iq),i=sqrt(-1) then p+q+q...

    Text Solution

    |

  6. If A and B are two non-zero n × n matrices such that A^2 + B = A^2 B, ...

    Text Solution

    |

  7. Let a tangent to the curve y^2 = 24x meet the curve xy =2 at points A ...

    Text Solution

    |

  8. The distance of the point (7,–3,–4) form the plane passing through the...

    Text Solution

    |

  9. The compound statement (~(P^^Q))vv((~P)^^Q)implies((~P)^^(~Q) is equiv...

    Text Solution

    |

  10. The relation R={(a,b): qcd(a,b)=1 , 2a!=b,a,d in z } is :

    Text Solution

    |

  11. Let vecu=veci-vecj-2^k, vec v =2vec i +vecj-vec k ,vecv.vecw=2 and vec...

    Text Solution

    |

  12. Let lambda in R and let the equation E be |x|^2-2|x|+|lambda-3|=0. The...

    Text Solution

    |

  13. A boy needs to select five courses from 12 available courses, out of w...

    Text Solution

    |

  14. The value of 8/pi int(0)^(pi/2)(cosx)^(2023)/((sinx)^(2023)+(cosx)^(20...

    Text Solution

    |

  15. The shortest distance between the line (x-2)/3=(y+1)/2=(z-6)/2 and (x-...

    Text Solution

    |

  16. The 4^th term of GP is 500 and its common ratio is 1/m, m in N .let S ...

    Text Solution

    |

  17. Let C be the largest circle centred at (2, 0) and inscribed in the ell...

    Text Solution

    |

  18. Let a tangent to the curve 9x^2 +16y^2 = 144, intersects the coordinat...

    Text Solution

    |

  19. Suppose sum(r=0)^2023r^2"^(2023)Cr=2023 xx alpha xx 2^(2022) Then the ...

    Text Solution

    |

  20. The value of 12 int0^3|x^2-3x+2|dx is

    Text Solution

    |