Home
Class 12
MATHS
Let vecu=veci-vecj-2^k, vec v =2vec i +v...

Let `vecu=veci-vecj-2^k, vec v =2vec i +vecj-vec k ,vecv.vecw=2` and `vec v times vec w=vec u+lambda vec v`. Then `vecu .vecw` is equal to

A

1

B

2

C

`3/2`

D

`-2/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\vec{u} \cdot \vec{w}\) given the vectors \(\vec{u}\), \(\vec{v}\), and the conditions provided. Let's break it down step by step. ### Step 1: Define the vectors We have: \[ \vec{u} = \hat{i} - \hat{j} - 2\hat{k} \] \[ \vec{v} = 2\hat{i} + \hat{j} - \hat{k} \] ### Step 2: Calculate \(\vec{v} \cdot \vec{w}\) We know from the problem that: \[ \vec{v} \cdot \vec{w} = 2 \] ### Step 3: Use the cross product condition The problem states: \[ \vec{v} \times \vec{w} = \vec{u} + \lambda \vec{v} \] Taking the dot product of both sides with \(\vec{v}\): \[ (\vec{v} \times \vec{w}) \cdot \vec{v} = (\vec{u} + \lambda \vec{v}) \cdot \vec{v} \] The left-hand side is zero since the dot product of a vector with a vector perpendicular to it (cross product) is zero: \[ 0 = \vec{u} \cdot \vec{v} + \lambda (\vec{v} \cdot \vec{v}) \] ### Step 4: Calculate \(\vec{u} \cdot \vec{v}\) Now, we calculate \(\vec{u} \cdot \vec{v}\): \[ \vec{u} \cdot \vec{v} = (\hat{i} - \hat{j} - 2\hat{k}) \cdot (2\hat{i} + \hat{j} - \hat{k}) \] Calculating this: \[ = 1 \cdot 2 + (-1) \cdot 1 + (-2) \cdot (-1) = 2 - 1 + 2 = 3 \] ### Step 5: Calculate \(\vec{v} \cdot \vec{v}\) Now, we calculate \(\vec{v} \cdot \vec{v}\): \[ \vec{v} \cdot \vec{v} = (2\hat{i} + \hat{j} - \hat{k}) \cdot (2\hat{i} + \hat{j} - \hat{k}) = 2^2 + 1^2 + (-1)^2 = 4 + 1 + 1 = 6 \] ### Step 6: Solve for \(\lambda\) Substituting back into the equation: \[ 0 = 3 + \lambda \cdot 6 \] This gives: \[ \lambda \cdot 6 = -3 \implies \lambda = -\frac{1}{2} \] ### Step 7: Use the cross product condition again Now, we take the dot product of the cross product condition with \(\vec{w}\): \[ (\vec{v} \times \vec{w}) \cdot \vec{w} = (\vec{u} + \lambda \vec{v}) \cdot \vec{w} \] Again, the left-hand side is zero: \[ 0 = \vec{u} \cdot \vec{w} + \lambda (\vec{v} \cdot \vec{w}) \] Substituting \(\lambda = -\frac{1}{2}\) and \(\vec{v} \cdot \vec{w} = 2\): \[ 0 = \vec{u} \cdot \vec{w} - \frac{1}{2} \cdot 2 \] This simplifies to: \[ 0 = \vec{u} \cdot \vec{w} - 1 \implies \vec{u} \cdot \vec{w} = 1 \] ### Final Answer Thus, the value of \(\vec{u} \cdot \vec{w}\) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

vec u = vec a-vec b, vec v = vec a + vec b and | vec a | = | vec b | = 2 then | vec u xxvec v | is equal to

If vec a = vec i + vec j + vec k, vec b = vec i - vec j + vec k and vec c = vec i + 2vec j - vec k, then the value of | [vec a.vec a, vec a.vec b, vec a.vec c], [vec b.vec a, vec b.vec b, vec b.vec c], [vec c.vec a, vec c.vec b, vec c.vec c ] | is equal to: (1) 2 (2) 4 (3) 16 (4) 64

If vec r = 3vec i + 2vec j-5vec kvec a = 2vec i-vec j + vec k, vec b = vec i + 3vec j-2vec k and vec c = -2vec i + vec j-3vec k such that vec r = lambdavec a + muvec b + deltavec c then mu, (lambda) / (2), delta are in? (A) AP (B) GP (C) HP (D) AGP

vec a = vec i + 2vec j + 3vec k, vec b = -vec i + 2vec j + vec k, rArr3vec i + vec j and vec d is normal to both vec a and vec b then (vec c, vec d)

Let vec a = vec i + vec j, vec b = vec j + vec kc = alphavec a + betavec b .If the vectors vec i-2vec j + vec k, 3vec i + 2vec j-vec k and vec c are coplanar then aplh (a) / (beta)

If vecA=2veci+vecj-3veck vecB=veci-2vecj+veck and vecC=-veci+vecj-vec4k find vecAxx(vecBxxvecC)

Let ABCD be the parallelogram whose sides AB and AD are represented by the vectors 2vec i+4vec j-5vec k and vec i+2vec j+3vec k respectively. Then if vec a is a unit vector parallel to vec AC ,then vec a is equal to

Let vec u,vec v and vec w be vector such vec u+vec v+vec w=vec 0* If |vec u|=3,|vec v|=4 and |vec w|=5, then find vec u.vec v+vec v*vec w+vec w*vec u

If vec a xx i+2vec a-4vec i-2vec j+vec k=0 then vec a=

vec a=2vec i+3vec j-vec k,vec b=-vec i+2vec j-4vec k and vec c=vec i+vec j+vec k then find thevalue of (vec a xxvec b)*(vec a xxvec c)

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. The compound statement (~(P^^Q))vv((~P)^^Q)implies((~P)^^(~Q) is equiv...

    Text Solution

    |

  2. The relation R={(a,b): qcd(a,b)=1 , 2a!=b,a,d in z } is :

    Text Solution

    |

  3. Let vecu=veci-vecj-2^k, vec v =2vec i +vecj-vec k ,vecv.vecw=2 and vec...

    Text Solution

    |

  4. Let lambda in R and let the equation E be |x|^2-2|x|+|lambda-3|=0. The...

    Text Solution

    |

  5. A boy needs to select five courses from 12 available courses, out of w...

    Text Solution

    |

  6. The value of 8/pi int(0)^(pi/2)(cosx)^(2023)/((sinx)^(2023)+(cosx)^(20...

    Text Solution

    |

  7. The shortest distance between the line (x-2)/3=(y+1)/2=(z-6)/2 and (x-...

    Text Solution

    |

  8. The 4^th term of GP is 500 and its common ratio is 1/m, m in N .let S ...

    Text Solution

    |

  9. Let C be the largest circle centred at (2, 0) and inscribed in the ell...

    Text Solution

    |

  10. Let a tangent to the curve 9x^2 +16y^2 = 144, intersects the coordinat...

    Text Solution

    |

  11. Suppose sum(r=0)^2023r^2"^(2023)Cr=2023 xx alpha xx 2^(2022) Then the ...

    Text Solution

    |

  12. The value of 12 int0^3|x^2-3x+2|dx is

    Text Solution

    |

  13. The number of 9 digit numbers, that can be formed using all the digit ...

    Text Solution

    |

  14. The Mean & Variance of the marks obtained by the student in a test are...

    Text Solution

    |

  15. If ar is coefficient of x^(10 – r) in the Binomial expansion of (1 + x...

    Text Solution

    |

  16. Let y=(x) be the solution curve of the differential equation dy/dx = y...

    Text Solution

    |

  17. Let f (x)=int(2x)/((x^2+1)(x^2+3))dx. if f (3)=1/2(loge5-loge6),then f...

    Text Solution

    |

  18. The minimum value of the function f(x)=int(0)^2e^(|x-t|)dt is:

    Text Solution

    |

  19. Let f:(0,1) rarr IR be a function defined by f(x)=1/(1-e(-x)),and g(x)...

    Text Solution

    |

  20. Let z1=2+3i and z2=3+4i. The set S={z in C:|z-z1|^(2)-|z-z2|^2=|z1-z2|...

    Text Solution

    |