Home
Class 12
MATHS
The shortest distance between the line (...

The shortest distance between the line `(x-2)/3=(y+1)/2=(z-6)/2` and `(x-6)/3=(1-y)/2=(z+8)/0` is equal to`

Text Solution

AI Generated Solution

The correct Answer is:
To find the shortest distance between the two given lines, we can follow these steps: ### Step 1: Identify the lines and their parametric equations The first line can be expressed in parametric form as: \[ L_1: \begin{cases} x = 2 + 3t \\ y = -1 + 2t \\ z = 6 + 2t \end{cases} \] where \( t \) is a parameter. The second line can be expressed as: \[ L_2: \begin{cases} x = 6 + 3s \\ y = 1 - 2s \\ z = -8 \end{cases} \] where \( s \) is another parameter. ### Step 2: Identify points and direction vectors From the parametric equations, we can identify: - A point on line \( L_1 \) is \( A(2, -1, 6) \) and the direction vector \( \mathbf{p} = \langle 3, 2, 2 \rangle \). - A point on line \( L_2 \) is \( B(6, 1, -8) \) and the direction vector \( \mathbf{q} = \langle 3, -2, 0 \rangle \). ### Step 3: Find the vector \( \mathbf{AB} \) The vector \( \mathbf{AB} \) from point \( A \) to point \( B \) is: \[ \mathbf{AB} = \mathbf{B} - \mathbf{A} = \langle 6 - 2, 1 - (-1), -8 - 6 \rangle = \langle 4, 2, -14 \rangle \] ### Step 4: Calculate the cross product \( \mathbf{p} \times \mathbf{q} \) To find the shortest distance, we need the cross product of the direction vectors \( \mathbf{p} \) and \( \mathbf{q} \): \[ \mathbf{p} \times \mathbf{q} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 2 & 2 \\ 3 & -2 & 0 \end{vmatrix} \] Calculating this determinant: \[ = \mathbf{i} \left(2 \cdot 0 - 2 \cdot (-2)\right) - \mathbf{j} \left(3 \cdot 0 - 2 \cdot 3\right) + \mathbf{k} \left(3 \cdot (-2) - 2 \cdot 3\right) \] \[ = \mathbf{i}(0 + 4) - \mathbf{j}(0 - 6) + \mathbf{k}(-6 - 6) \] \[ = 4\mathbf{i} + 6\mathbf{j} - 12\mathbf{k} \] Thus, \( \mathbf{p} \times \mathbf{q} = \langle 4, 6, -12 \rangle \). ### Step 5: Calculate the magnitude of the cross product The magnitude of \( \mathbf{p} \times \mathbf{q} \) is: \[ |\mathbf{p} \times \mathbf{q}| = \sqrt{4^2 + 6^2 + (-12)^2} = \sqrt{16 + 36 + 144} = \sqrt{196} = 14 \] ### Step 6: Calculate the shortest distance The shortest distance \( D \) between the two lines is given by: \[ D = \frac{|\mathbf{AB} \cdot (\mathbf{p} \times \mathbf{q})|}{|\mathbf{p} \times \mathbf{q}|} \] Calculating \( \mathbf{AB} \cdot (\mathbf{p} \times \mathbf{q}) \): \[ \mathbf{AB} \cdot (\mathbf{p} \times \mathbf{q}) = \langle 4, 2, -14 \rangle \cdot \langle 4, 6, -12 \rangle = 4 \cdot 4 + 2 \cdot 6 + (-14) \cdot (-12) \] \[ = 16 + 12 + 168 = 196 \] Thus, \[ D = \frac{|196|}{14} = \frac{196}{14} = 14 \] ### Final Answer The shortest distance between the two lines is \( \boxed{14} \). ---
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between the lines (x)/2=(y-2)/3=(z-4)/3 and (x-1)/3=(y-2)/7=(z-3)/8

The shortest distance between the lines (x-2)/3=(y-3)/4=(z-6)/5 and (x-5)/1=(y-2)/1=(z-1)/2 is (A) 3 (B) 2 (C) 1 (D) 0

Find the shortest distance between the lines (x-1)/2=(y-2)/4=(z-3)/7 and (x-1)/4=(y-2)/5=(z-3)/7

The shortest distance between the lines (x-2)/(3)=(y+3)/(4)=(z-1)/(5) and (x-5)/(1)=(y-1)/(2)=(z-6)/(3) , is

The shortest distance between the line 1+x=2y=-12z and x=y+2=6z-6 is

The shortest distance between line (x-3)/(3)=(y-8)/(-1)=(z-3)/(1) and (x+3)/(-3)=(y+7)/(2)=(z-6)/(4) is

If the shortest distance between the lines (x-3)/(3)=(y-8)/(-1)=(z-3)/(1) and (x+3)/(-3)=(y+7)/(2)=(z-6)/(4) is lambdasqrt(30) unit, then the value of lambda is

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. A boy needs to select five courses from 12 available courses, out of w...

    Text Solution

    |

  2. The value of 8/pi int(0)^(pi/2)(cosx)^(2023)/((sinx)^(2023)+(cosx)^(20...

    Text Solution

    |

  3. The shortest distance between the line (x-2)/3=(y+1)/2=(z-6)/2 and (x-...

    Text Solution

    |

  4. The 4^th term of GP is 500 and its common ratio is 1/m, m in N .let S ...

    Text Solution

    |

  5. Let C be the largest circle centred at (2, 0) and inscribed in the ell...

    Text Solution

    |

  6. Let a tangent to the curve 9x^2 +16y^2 = 144, intersects the coordinat...

    Text Solution

    |

  7. Suppose sum(r=0)^2023r^2"^(2023)Cr=2023 xx alpha xx 2^(2022) Then the ...

    Text Solution

    |

  8. The value of 12 int0^3|x^2-3x+2|dx is

    Text Solution

    |

  9. The number of 9 digit numbers, that can be formed using all the digit ...

    Text Solution

    |

  10. The Mean & Variance of the marks obtained by the student in a test are...

    Text Solution

    |

  11. If ar is coefficient of x^(10 – r) in the Binomial expansion of (1 + x...

    Text Solution

    |

  12. Let y=(x) be the solution curve of the differential equation dy/dx = y...

    Text Solution

    |

  13. Let f (x)=int(2x)/((x^2+1)(x^2+3))dx. if f (3)=1/2(loge5-loge6),then f...

    Text Solution

    |

  14. The minimum value of the function f(x)=int(0)^2e^(|x-t|)dt is:

    Text Solution

    |

  15. Let f:(0,1) rarr IR be a function defined by f(x)=1/(1-e(-x)),and g(x)...

    Text Solution

    |

  16. Let z1=2+3i and z2=3+4i. The set S={z in C:|z-z1|^(2)-|z-z2|^2=|z1-z2|...

    Text Solution

    |

  17. The distance of the point (6,-2 sqrt 2) from the common tangent y = mx...

    Text Solution

    |

  18. Let x, y, z gt 1 and A= [[1,logx y,logx z],[logy x,2,logy z],[logz x,l...

    Text Solution

    |

  19. Let y(x) = (1 + x) (1 + x^2 ) (1 + x^4 ) (1 + x^8 ) (1 + x^16). Then y...

    Text Solution

    |

  20. Let M be the maximum value of the product of two positive integers whe...

    Text Solution

    |