Home
Class 12
MATHS
Suppose sum(r=0)^2023r^2"^(2023)Cr=2023 ...

Suppose `sum_(r=0)^2023r^2"^(2023)C_r=2023 xx alpha xx 2^(2022)` Then the value of `alpha` is.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \sum_{r=0}^{2023} r^2 \binom{2023}{r} \] and show that it equals \(2023 \times \alpha \times 2^{2022}\). ### Step 1: Use the identity for \( r^2 \) We can express \( r^2 \) in terms of binomial coefficients. The identity we can use is: \[ r^2 = r(r-1) + r \] Thus, we can rewrite the sum as: \[ \sum_{r=0}^{2023} r^2 \binom{2023}{r} = \sum_{r=0}^{2023} (r(r-1) + r) \binom{2023}{r} \] ### Step 2: Break the sum into two parts Now, we can separate the sum into two parts: \[ \sum_{r=0}^{2023} r^2 \binom{2023}{r} = \sum_{r=0}^{2023} r(r-1) \binom{2023}{r} + \sum_{r=0}^{2023} r \binom{2023}{r} \] ### Step 3: Evaluate the first sum For the first sum, we can use the identity: \[ r(r-1) \binom{n}{r} = n(n-1) \binom{n-2}{r-2} \] Thus, we have: \[ \sum_{r=0}^{2023} r(r-1) \binom{2023}{r} = 2023 \times 2022 \sum_{r=2}^{2023} \binom{2021}{r-2} = 2023 \times 2022 \cdot 2^{2021} \] ### Step 4: Evaluate the second sum For the second sum, we can use the identity: \[ \sum_{r=0}^{n} r \binom{n}{r} = n \cdot 2^{n-1} \] Thus, we have: \[ \sum_{r=0}^{2023} r \binom{2023}{r} = 2023 \cdot 2^{2022} \] ### Step 5: Combine the results Now we can combine both parts: \[ \sum_{r=0}^{2023} r^2 \binom{2023}{r} = 2023 \times 2022 \cdot 2^{2021} + 2023 \cdot 2^{2022} \] Factoring out \(2023\): \[ = 2023 \left( 2022 \cdot 2^{2021} + 2^{2022} \right) \] ### Step 6: Simplify the expression Notice that \(2^{2022} = 2 \cdot 2^{2021}\), so we can rewrite: \[ = 2023 \left( 2022 \cdot 2^{2021} + 2 \cdot 2^{2021} \right) = 2023 \left( (2022 + 2) \cdot 2^{2021} \right) = 2023 \cdot 2024 \cdot 2^{2021} \] ### Step 7: Relate to the original equation Now we have: \[ 2023 \cdot 2024 \cdot 2^{2021} = 2023 \cdot \alpha \cdot 2^{2022} \] Dividing both sides by \(2023 \cdot 2^{2021}\): \[ 2024 = \alpha \cdot 2 \] ### Step 8: Solve for \(\alpha\) Thus, we can solve for \(\alpha\): \[ \alpha = \frac{2024}{2} = 1012 \] ### Final Answer The value of \(\alpha\) is: \[ \boxed{1012} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

If sum_(0)^(10) 5/((r+2)(r+4)) is alpha . Then, find the value of [alpha] .

If underset(r=1)overset(10)sum r! (r^(3)+6r^(2)+2r+5)=alpha (11!) , then the value of alpha is equal to .......

If alpha and beta are roots of equation x^(2)+4x+p=0 where p=sum_(r=0)^(n)nC_(r)(1+rx)/((1+nx)^(r))(-1)^(r), then the value of | alpha-beta| is

sum_(r=0)^6 .^(6)C_(r) xx ^(6)C_(6-r) = ?

If sum_(r=1)^9 ((r+3)/2^r)(.^9C_r)=alpha(3/2)^9+beta , then alpha+beta is equal to :

Let 2 alpha,beta be the roots of the equation 2x^(2)+px+r=0 and alpha,-2 beta be the roots of 2x^(2)+qx-r=0, the the value of 25r is -

The sum sum_(r=1)^(10)(r^(2)+1)xx(r!) is equal to

If alpha=e^(2 pi(i)/(11)) and f(x)=5+sum_(k=1)^(60)A_(x)^(k), then the value of sum_(r=0)^(10)f(alpha^(r)x) is

Value of sum_(r=0)^(2n)r*(""^(2n)C_(r))*(1)/((r+2)) is equal to :

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. Let C be the largest circle centred at (2, 0) and inscribed in the ell...

    Text Solution

    |

  2. Let a tangent to the curve 9x^2 +16y^2 = 144, intersects the coordinat...

    Text Solution

    |

  3. Suppose sum(r=0)^2023r^2"^(2023)Cr=2023 xx alpha xx 2^(2022) Then the ...

    Text Solution

    |

  4. The value of 12 int0^3|x^2-3x+2|dx is

    Text Solution

    |

  5. The number of 9 digit numbers, that can be formed using all the digit ...

    Text Solution

    |

  6. The Mean & Variance of the marks obtained by the student in a test are...

    Text Solution

    |

  7. If ar is coefficient of x^(10 – r) in the Binomial expansion of (1 + x...

    Text Solution

    |

  8. Let y=(x) be the solution curve of the differential equation dy/dx = y...

    Text Solution

    |

  9. Let f (x)=int(2x)/((x^2+1)(x^2+3))dx. if f (3)=1/2(loge5-loge6),then f...

    Text Solution

    |

  10. The minimum value of the function f(x)=int(0)^2e^(|x-t|)dt is:

    Text Solution

    |

  11. Let f:(0,1) rarr IR be a function defined by f(x)=1/(1-e(-x)),and g(x)...

    Text Solution

    |

  12. Let z1=2+3i and z2=3+4i. The set S={z in C:|z-z1|^(2)-|z-z2|^2=|z1-z2|...

    Text Solution

    |

  13. The distance of the point (6,-2 sqrt 2) from the common tangent y = mx...

    Text Solution

    |

  14. Let x, y, z gt 1 and A= [[1,logx y,logx z],[logy x,2,logy z],[logz x,l...

    Text Solution

    |

  15. Let y(x) = (1 + x) (1 + x^2 ) (1 + x^4 ) (1 + x^8 ) (1 + x^16). Then y...

    Text Solution

    |

  16. Let M be the maximum value of the product of two positive integers whe...

    Text Solution

    |

  17. Consider the lines L1 and L2 given by L1:(x-1)/2=(y-3)/1=(z-2)/2 ,L2...

    Text Solution

    |

  18. Let S1 and S2 be respectively the sets of all a in R – {0} for which t...

    Text Solution

    |

  19. The distance of the point P (4, 6 – 2) from the line passing through t...

    Text Solution

    |

  20. The points of intersection of the line ax + by = 0, (a != b) and the ...

    Text Solution

    |