Home
Class 12
MATHS
The value of 12 int0^3|x^2-3x+2|dx is...

The value of `12 int_0^3|x^2-3x+2|dx` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( 12 \int_0^3 |x^2 - 3x + 2| \, dx \), we will follow these steps: ### Step 1: Factor the Quadratic Expression The expression inside the absolute value can be factored: \[ x^2 - 3x + 2 = (x - 1)(x - 2) \] ### Step 2: Determine the Roots and Intervals The roots of the equation \( x^2 - 3x + 2 = 0 \) are \( x = 1 \) and \( x = 2 \). These roots divide the interval \([0, 3]\) into three sub-intervals: \([0, 1]\), \([1, 2]\), and \([2, 3]\). ### Step 3: Analyze the Sign of the Expression in Each Interval - For \( x \in [0, 1] \): - \( (x - 1) < 0 \) and \( (x - 2) < 0 \) ⇒ \( |(x - 1)(x - 2)| = -(x - 1)(x - 2) = -(x^2 - 3x + 2) \) - For \( x \in [1, 2] \): - \( (x - 1) \geq 0 \) and \( (x - 2) < 0 \) ⇒ \( |(x - 1)(x - 2)| = -(x - 1)(x - 2) = -(x^2 - 3x + 2) \) - For \( x \in [2, 3] \): - \( (x - 1) \geq 0 \) and \( (x - 2) \geq 0 \) ⇒ \( |(x - 1)(x - 2)| = (x - 1)(x - 2) = x^2 - 3x + 2 \) ### Step 4: Set Up the Integral Now we can express the integral as: \[ \int_0^3 |x^2 - 3x + 2| \, dx = \int_0^1 -(x^2 - 3x + 2) \, dx + \int_1^2 -(x^2 - 3x + 2) \, dx + \int_2^3 (x^2 - 3x + 2) \, dx \] ### Step 5: Calculate Each Integral 1. **From \(0\) to \(1\)**: \[ \int_0^1 -(x^2 - 3x + 2) \, dx = \int_0^1 (3x - x^2 - 2) \, dx \] \[ = \left[ \frac{3x^2}{2} - \frac{x^3}{3} - 2x \right]_0^1 = \left( \frac{3}{2} - \frac{1}{3} - 2 \right) = \frac{3}{2} - \frac{1}{3} - \frac{6}{3} = \frac{3}{2} - \frac{7}{3} = \frac{9 - 14}{6} = -\frac{5}{6} \] 2. **From \(1\) to \(2\)**: \[ \int_1^2 -(x^2 - 3x + 2) \, dx = \int_1^2 (3x - x^2 - 2) \, dx \] \[ = \left[ \frac{3x^2}{2} - \frac{x^3}{3} - 2x \right]_1^2 = \left( \frac{3(2^2)}{2} - \frac{(2^3)}{3} - 2(2) \right) - \left( \frac{3(1^2)}{2} - \frac{(1^3)}{3} - 2(1) \right) \] \[ = \left( 6 - \frac{8}{3} - 4 \right) - \left( \frac{3}{2} - \frac{1}{3} - 2 \right) \] \[ = \left( 2 - \frac{8}{3} \right) - \left( \frac{3}{2} - \frac{1}{3} - 2 \right) = \left( \frac{6 - 8}{3} \right) - \left( \frac{9 - 1 - 6}{6} \right) = -\frac{2}{3} - \left( \frac{2}{6} \right) = -\frac{2}{3} - \frac{1}{3} = -1 \] 3. **From \(2\) to \(3\)**: \[ \int_2^3 (x^2 - 3x + 2) \, dx = \left[ \frac{x^3}{3} - \frac{3x^2}{2} + 2x \right]_2^3 \] \[ = \left( \frac{27}{3} - \frac{27}{2} + 6 \right) - \left( \frac{8}{3} - \frac{12}{2} + 4 \right) = \left( 9 - \frac{27}{2} + 6 \right) - \left( \frac{8}{3} - 6 + 4 \right) \] \[ = \left( 15 - \frac{27}{2} \right) - \left( \frac{8}{3} - 2 \right) = \left( \frac{30 - 27}{2} \right) - \left( \frac{8 - 6}{3} \right) = \frac{3}{2} - \frac{2}{3} \] \[ = \frac{9 - 4}{6} = \frac{5}{6} \] ### Step 6: Combine the Results Now we combine the results from the three integrals: \[ \int_0^3 |x^2 - 3x + 2| \, dx = -\frac{5}{6} - 1 + \frac{5}{6} = -1 \] ### Step 7: Multiply by 12 Finally, we multiply by 12: \[ 12 \int_0^3 |x^2 - 3x + 2| \, dx = 12 \times (-1) = -12 \] ### Final Answer Thus, the value of \( 12 \int_0^3 |x^2 - 3x + 2| \, dx \) is: \[ \boxed{-12} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

int_0^3|x-2|dx

Evaluate int_(0)^(2) |x^2-3x+2|dx

The value of int_0^1(2x^3-3x^2-x+1)^(1/3)dx is equal to

int_0^2(x^3+4x^2)dx

The value of int_(0)^(2) 3x^(2)dx+int_(0)^(pi//2) sin x dx is :-

int_0^3(4x^3+2x-3)dx=?

int_(0)^(2)3x^(2)dx is

int_0^2(2-3x)^3dx=?

int_0^2(x^3+2x)dx=?

int_0^3x^2e^(x^3)dx=?

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. Let a tangent to the curve 9x^2 +16y^2 = 144, intersects the coordinat...

    Text Solution

    |

  2. Suppose sum(r=0)^2023r^2"^(2023)Cr=2023 xx alpha xx 2^(2022) Then the ...

    Text Solution

    |

  3. The value of 12 int0^3|x^2-3x+2|dx is

    Text Solution

    |

  4. The number of 9 digit numbers, that can be formed using all the digit ...

    Text Solution

    |

  5. The Mean & Variance of the marks obtained by the student in a test are...

    Text Solution

    |

  6. If ar is coefficient of x^(10 – r) in the Binomial expansion of (1 + x...

    Text Solution

    |

  7. Let y=(x) be the solution curve of the differential equation dy/dx = y...

    Text Solution

    |

  8. Let f (x)=int(2x)/((x^2+1)(x^2+3))dx. if f (3)=1/2(loge5-loge6),then f...

    Text Solution

    |

  9. The minimum value of the function f(x)=int(0)^2e^(|x-t|)dt is:

    Text Solution

    |

  10. Let f:(0,1) rarr IR be a function defined by f(x)=1/(1-e(-x)),and g(x)...

    Text Solution

    |

  11. Let z1=2+3i and z2=3+4i. The set S={z in C:|z-z1|^(2)-|z-z2|^2=|z1-z2|...

    Text Solution

    |

  12. The distance of the point (6,-2 sqrt 2) from the common tangent y = mx...

    Text Solution

    |

  13. Let x, y, z gt 1 and A= [[1,logx y,logx z],[logy x,2,logy z],[logz x,l...

    Text Solution

    |

  14. Let y(x) = (1 + x) (1 + x^2 ) (1 + x^4 ) (1 + x^8 ) (1 + x^16). Then y...

    Text Solution

    |

  15. Let M be the maximum value of the product of two positive integers whe...

    Text Solution

    |

  16. Consider the lines L1 and L2 given by L1:(x-1)/2=(y-3)/1=(z-2)/2 ,L2...

    Text Solution

    |

  17. Let S1 and S2 be respectively the sets of all a in R – {0} for which t...

    Text Solution

    |

  18. The distance of the point P (4, 6 – 2) from the line passing through t...

    Text Solution

    |

  19. The points of intersection of the line ax + by = 0, (a != b) and the ...

    Text Solution

    |

  20. The vector veca=-hati+2hatj+hatk is rotated through a right angle, pas...

    Text Solution

    |