Home
Class 12
MATHS
If ar is coefficient of x^(10 – r) in th...

If `a_r` is coefficient of `x^(10 – r)` in the Binomial expansion of `(1 + x)^(10)`,then `sum_(r=1)^10r^3((a_r)/(a_(r-1)))^2` is equal to

A

3025

B

1210

C

5445

D

4895

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \[ \sum_{r=1}^{10} r^3 \left( \frac{a_r}{a_{r-1}} \right)^2 \] where \( a_r \) is the coefficient of \( x^{10-r} \) in the binomial expansion of \( (1 + x)^{10} \). ### Step 1: Identify \( a_r \) and \( a_{r-1} \) From the binomial expansion, the coefficient \( a_r \) can be expressed as: \[ a_r = \binom{10}{r} \] and \[ a_{r-1} = \binom{10}{r-1} \] ### Step 2: Calculate \( \frac{a_r}{a_{r-1}} \) Now we can express \( \frac{a_r}{a_{r-1}} \): \[ \frac{a_r}{a_{r-1}} = \frac{\binom{10}{r}}{\binom{10}{r-1}} = \frac{10! / (r!(10-r)!)}{(10! / ((r-1)!(10-r+1)!))} = \frac{(10-r+1)}{r} \] ### Step 3: Substitute into the original sum Substituting this into our original sum gives: \[ \sum_{r=1}^{10} r^3 \left( \frac{10 - r + 1}{r} \right)^2 = \sum_{r=1}^{10} r^3 \cdot \frac{(11 - r)^2}{r^2} \] This simplifies to: \[ \sum_{r=1}^{10} r \cdot (11 - r)^2 \] ### Step 4: Expand the expression Expanding \( (11 - r)^2 \): \[ (11 - r)^2 = 121 - 22r + r^2 \] Thus, we can rewrite the sum as: \[ \sum_{r=1}^{10} r \cdot (121 - 22r + r^2) = \sum_{r=1}^{10} (121r - 22r^2 + r^3) \] ### Step 5: Break the sum into parts Now we can break this into three separate sums: \[ 121 \sum_{r=1}^{10} r - 22 \sum_{r=1}^{10} r^2 + \sum_{r=1}^{10} r^3 \] ### Step 6: Calculate the individual sums Using the formulas for the sums: 1. \( \sum_{r=1}^{n} r = \frac{n(n+1)}{2} \) 2. \( \sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6} \) 3. \( \sum_{r=1}^{n} r^3 = \left( \frac{n(n+1)}{2} \right)^2 \) For \( n = 10 \): 1. \( \sum_{r=1}^{10} r = \frac{10 \cdot 11}{2} = 55 \) 2. \( \sum_{r=1}^{10} r^2 = \frac{10 \cdot 11 \cdot 21}{6} = 385 \) 3. \( \sum_{r=1}^{10} r^3 = \left( \frac{10 \cdot 11}{2} \right)^2 = 3025 \) ### Step 7: Substitute back into the expression Now substituting these values back: \[ = 121 \cdot 55 - 22 \cdot 385 + 3025 \] Calculating each term: 1. \( 121 \cdot 55 = 6655 \) 2. \( -22 \cdot 385 = -8470 \) 3. \( 3025 \) Now combine them: \[ 6655 - 8470 + 3025 = 1210 \] ### Final Answer Thus, the value of the given expression is \[ \boxed{1210} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

If C_(r)=10C_(r), then sum_(r=1)^(10)C_(r-1)C_(r) is equal to

The value sum_(r=1)^(10)r.(n_(C_(r)))/(n_(C_(r-1))) is equal to

The value of sum_(r=1)^(10)r*(nC_(r))/(nC_(r-1)) equal is to

The sum sum_(r=1)^(10)(r^(2)+1)xx(r!) is equal to

For r=0,1,.....,10, let A_(r),B_(r),quad and C_(r) denote,respectively,the coefficient of x^(r) in the expansions of (1+x)^(10),(+x)^(20) and (1+x)^(30). Then sum A_(r)(B_(10)B_(r)-C_(10)A_(r)) is equal to

sum_(r=1)^(10)(r)/(1-3r^(2)+r^(4))

The value of sum sum_(r=1)^(10)(2^(r-1)+8r-3) is equal to :

Let a_r denote the coefficient of y^(r-1) in the expansion of (1 + 2y)^(10) . If (a_(r+2))/(a_(r)) = 4 , then r is equal to

The value of Sigma_(r=1)^(n) (a+r+ar)(-a)^r is equal to

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. The number of 9 digit numbers, that can be formed using all the digit ...

    Text Solution

    |

  2. The Mean & Variance of the marks obtained by the student in a test are...

    Text Solution

    |

  3. If ar is coefficient of x^(10 – r) in the Binomial expansion of (1 + x...

    Text Solution

    |

  4. Let y=(x) be the solution curve of the differential equation dy/dx = y...

    Text Solution

    |

  5. Let f (x)=int(2x)/((x^2+1)(x^2+3))dx. if f (3)=1/2(loge5-loge6),then f...

    Text Solution

    |

  6. The minimum value of the function f(x)=int(0)^2e^(|x-t|)dt is:

    Text Solution

    |

  7. Let f:(0,1) rarr IR be a function defined by f(x)=1/(1-e(-x)),and g(x)...

    Text Solution

    |

  8. Let z1=2+3i and z2=3+4i. The set S={z in C:|z-z1|^(2)-|z-z2|^2=|z1-z2|...

    Text Solution

    |

  9. The distance of the point (6,-2 sqrt 2) from the common tangent y = mx...

    Text Solution

    |

  10. Let x, y, z gt 1 and A= [[1,logx y,logx z],[logy x,2,logy z],[logz x,l...

    Text Solution

    |

  11. Let y(x) = (1 + x) (1 + x^2 ) (1 + x^4 ) (1 + x^8 ) (1 + x^16). Then y...

    Text Solution

    |

  12. Let M be the maximum value of the product of two positive integers whe...

    Text Solution

    |

  13. Consider the lines L1 and L2 given by L1:(x-1)/2=(y-3)/1=(z-2)/2 ,L2...

    Text Solution

    |

  14. Let S1 and S2 be respectively the sets of all a in R – {0} for which t...

    Text Solution

    |

  15. The distance of the point P (4, 6 – 2) from the line passing through t...

    Text Solution

    |

  16. The points of intersection of the line ax + by = 0, (a != b) and the ...

    Text Solution

    |

  17. The vector veca=-hati+2hatj+hatk is rotated through a right angle, pas...

    Text Solution

    |

  18. The statement (p^^(~q)) implies (p implies ~q) is

    Text Solution

    |

  19. Let x = 2 be a local minima of the function f(x) = 2x^4 – 18x^2 + 8x +...

    Text Solution

    |

  20. The value of lim(nrarroo)(1+2-3+4+5-6....(3n-2)+(3n-1)-3n)/(sqrt(2n^4+...

    Text Solution

    |