Home
Class 12
MATHS
Let f (x)=int(2x)/((x^2+1)(x^2+3))dx. if...

Let `f (x)=int(2x)/((x^2+1)(x^2+3))dx`. if `f (3)=1/2(log_e5-log_e6)`,then `f(4)`is equal to

A

`log_e 17-log_e 18`

B

`log_e 19-log_e 20`

C

`1/2(log_e 19-log_e 17)`

D

`1/2(log_e 17-log_e 19)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the function defined as: \[ f(x) = \int \frac{2x}{(x^2 + 1)(x^2 + 3)} \, dx \] ### Step 1: Substitution We will use the substitution \( t = x^2 \). Then, we have: \[ dt = 2x \, dx \implies dx = \frac{dt}{2x} \] Substituting \( x^2 = t \) gives us: \[ f(x) = \int \frac{2x}{(t + 1)(t + 3)} \cdot \frac{dt}{2x} = \int \frac{1}{(t + 1)(t + 3)} \, dt \] ### Step 2: Partial Fraction Decomposition Next, we perform partial fraction decomposition on the integrand: \[ \frac{1}{(t + 1)(t + 3)} = \frac{A}{t + 1} + \frac{B}{t + 3} \] Multiplying through by the denominator \((t + 1)(t + 3)\) gives: \[ 1 = A(t + 3) + B(t + 1) \] Expanding and rearranging: \[ 1 = (A + B)t + (3A + B) \] This leads to the system of equations: 1. \( A + B = 0 \) 2. \( 3A + B = 1 \) ### Step 3: Solving the System of Equations From the first equation, we have \( B = -A \). Substituting into the second equation: \[ 3A - A = 1 \implies 2A = 1 \implies A = \frac{1}{2} \] Thus, \( B = -\frac{1}{2} \). Therefore, we can write: \[ \frac{1}{(t + 1)(t + 3)} = \frac{1/2}{t + 1} - \frac{1/2}{t + 3} \] ### Step 4: Integrating Now we can integrate: \[ f(x) = \int \left( \frac{1/2}{t + 1} - \frac{1/2}{t + 3} \right) dt = \frac{1}{2} \ln |t + 1| - \frac{1}{2} \ln |t + 3| + C \] Substituting back \( t = x^2 \): \[ f(x) = \frac{1}{2} \ln |x^2 + 1| - \frac{1}{2} \ln |x^2 + 3| + C = \frac{1}{2} \ln \left( \frac{x^2 + 1}{x^2 + 3} \right) + C \] ### Step 5: Finding the Constant \( C \) We know that \( f(3) = \frac{1}{2} (\ln 5 - \ln 6) \). Thus: \[ f(3) = \frac{1}{2} \ln \left( \frac{3^2 + 1}{3^2 + 3} \right) + C = \frac{1}{2} \ln \left( \frac{10}{12} \right) + C = \frac{1}{2} \ln \left( \frac{5}{6} \right) + C \] Setting this equal to \( \frac{1}{2} (\ln 5 - \ln 6) \): \[ \frac{1}{2} \ln \left( \frac{5}{6} \right) + C = \frac{1}{2} \ln \left( \frac{5}{6} \right) \] This implies \( C = 0 \). ### Step 6: Final Function Thus, we have: \[ f(x) = \frac{1}{2} \ln \left( \frac{x^2 + 1}{x^2 + 3} \right) \] ### Step 7: Calculate \( f(4) \) Now we calculate \( f(4) \): \[ f(4) = \frac{1}{2} \ln \left( \frac{4^2 + 1}{4^2 + 3} \right) = \frac{1}{2} \ln \left( \frac{16 + 1}{16 + 3} \right) = \frac{1}{2} \ln \left( \frac{17}{19} \right) \] ### Final Answer Thus, the value of \( f(4) \) is: \[ f(4) = \frac{1}{2} \ln \left( \frac{17}{19} \right) \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

if f(x)=log_(5)log_(3)x then f'(e) is equal to

3f(x)-f(1/x)=log_(e)x^(4)(xgt0) , then f(10^(-x)) is equal to

Let int(10lnx)/(x^(2))dx=f(x), for all positive x. If f(e )=(1)/(e ) , then f(2)+f(4) is equal to

Let f(x)=log_(2)(x+sqrt(x^(2)+1)). If f(a)=b, then f(-a) is equal to

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))}, then f'((1)/( e )) is equal to

If int(x^(2)+1)/((x-1)^(2)(x+3))dx=(3)/(8)log|x-1|-(1)/(2(x-1))+F(x)+C then 8F'(2) equals to

"If " f(x)=int(dx)/(x^(1//3)+2) " and "f(0)=12log_(e)2, " then the value of " f(-1) " is"-.

int_(1)^(3)|(2-x)log_(e )x|dx is equal to:

If f(x)=log_(x^(3))(log x^(2)), then f'(x) at x=e is

For x in(0,oo) if int(e^(x)(x-2)dx)/(x(x^(2)+e^(x)))=f(x) , f(1)=log_(e)(1+e) then

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. If ar is coefficient of x^(10 – r) in the Binomial expansion of (1 + x...

    Text Solution

    |

  2. Let y=(x) be the solution curve of the differential equation dy/dx = y...

    Text Solution

    |

  3. Let f (x)=int(2x)/((x^2+1)(x^2+3))dx. if f (3)=1/2(loge5-loge6),then f...

    Text Solution

    |

  4. The minimum value of the function f(x)=int(0)^2e^(|x-t|)dt is:

    Text Solution

    |

  5. Let f:(0,1) rarr IR be a function defined by f(x)=1/(1-e(-x)),and g(x)...

    Text Solution

    |

  6. Let z1=2+3i and z2=3+4i. The set S={z in C:|z-z1|^(2)-|z-z2|^2=|z1-z2|...

    Text Solution

    |

  7. The distance of the point (6,-2 sqrt 2) from the common tangent y = mx...

    Text Solution

    |

  8. Let x, y, z gt 1 and A= [[1,logx y,logx z],[logy x,2,logy z],[logz x,l...

    Text Solution

    |

  9. Let y(x) = (1 + x) (1 + x^2 ) (1 + x^4 ) (1 + x^8 ) (1 + x^16). Then y...

    Text Solution

    |

  10. Let M be the maximum value of the product of two positive integers whe...

    Text Solution

    |

  11. Consider the lines L1 and L2 given by L1:(x-1)/2=(y-3)/1=(z-2)/2 ,L2...

    Text Solution

    |

  12. Let S1 and S2 be respectively the sets of all a in R – {0} for which t...

    Text Solution

    |

  13. The distance of the point P (4, 6 – 2) from the line passing through t...

    Text Solution

    |

  14. The points of intersection of the line ax + by = 0, (a != b) and the ...

    Text Solution

    |

  15. The vector veca=-hati+2hatj+hatk is rotated through a right angle, pas...

    Text Solution

    |

  16. The statement (p^^(~q)) implies (p implies ~q) is

    Text Solution

    |

  17. Let x = 2 be a local minima of the function f(x) = 2x^4 – 18x^2 + 8x +...

    Text Solution

    |

  18. The value of lim(nrarroo)(1+2-3+4+5-6....(3n-2)+(3n-1)-3n)/(sqrt(2n^4+...

    Text Solution

    |

  19. Let veca, vecb and vecc be three non zero vectors such that vec b.vec...

    Text Solution

    |

  20. The vertices a hyperbola H are (pm6, 0) and its eccentricity is sqrt5...

    Text Solution

    |