Home
Class 12
MATHS
The minimum value of the function f(x)=i...

The minimum value of the function `f(x)=int_(0)^2e^(|x-t|)dt` is:

A

2

B

2(e-1)

C

0.2

D

e(e-1)

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the function \( f(x) = \int_{0}^{2} e^{|x-t|} dt \), we will analyze the integral by considering different cases based on the value of \( x \). ### Step 1: Analyze the cases for \( x \) 1. **Case 1: \( x < 0 \)** In this case, \( |x - t| = t - x \) for all \( t \) in the interval [0, 2]. Thus, we can rewrite the function as: \[ f(x) = \int_{0}^{2} e^{t - x} dt = e^{-x} \int_{0}^{2} e^{t} dt \] Now we compute the integral: \[ \int_{0}^{2} e^{t} dt = [e^{t}]_{0}^{2} = e^{2} - 1 \] Therefore, we have: \[ f(x) = e^{-x} (e^{2} - 1) \] 2. **Case 2: \( 0 \leq x < 2 \)** Here, we need to split the integral into two parts: - From \( 0 \) to \( x \): \( |x - t| = x - t \) - From \( x \) to \( 2 \): \( |x - t| = t - x \) Thus, we can express \( f(x) \) as: \[ f(x) = \int_{0}^{x} e^{x - t} dt + \int_{x}^{2} e^{t - x} dt \] Calculating the first integral: \[ \int_{0}^{x} e^{x - t} dt = e^{x} \int_{0}^{x} e^{-t} dt = e^{x} [-e^{-t}]_{0}^{x} = e^{x} (1 - e^{-x}) = e^{x} - 1 \] Now for the second integral: \[ \int_{x}^{2} e^{t - x} dt = e^{-x} \int_{x}^{2} e^{t} dt = e^{-x} [e^{t}]_{x}^{2} = e^{-x} (e^{2} - e^{x}) = e^{2 - x} - 1 \] Therefore, we have: \[ f(x) = (e^{x} - 1) + (e^{2 - x} - 1) = e^{x} + e^{2 - x} - 2 \] 3. **Case 3: \( x \geq 2 \)** In this case, \( |x - t| = x - t \) for all \( t \) in the interval [0, 2]. Thus: \[ f(x) = \int_{0}^{2} e^{x - t} dt = e^{x} \int_{0}^{2} e^{-t} dt = e^{x} [-e^{-t}]_{0}^{2} = e^{x} (1 - e^{-2}) = e^{x} (1 - \frac{1}{e^{2}}) = e^{x} \left(1 - \frac{1}{e^{2}}\right) \] ### Step 2: Finding the minimum value Now we need to analyze the expressions we obtained for \( f(x) \): - For \( x < 0 \): \( f(x) = e^{-x} (e^{2} - 1) \) - For \( 0 \leq x < 2 \): \( f(x) = e^{x} + e^{2 - x} - 2 \) - For \( x \geq 2 \): \( f(x) = e^{x} \left(1 - \frac{1}{e^{2}}\right) \) To find the minimum, we can evaluate \( f(x) \) at critical points and endpoints. 1. At \( x = 0 \): \[ f(0) = e^{0} + e^{2} - 2 = 1 + e^{2} - 2 = e^{2} - 1 \] 2. At \( x = 2 \): \[ f(2) = e^{2} \left(1 - \frac{1}{e^{2}}\right) = e^{2} - 1 \] 3. Check the behavior as \( x \to -\infty \) and \( x \to \infty \): - As \( x \to -\infty \), \( f(x) \to \infty \). - As \( x \to \infty \), \( f(x) \to \infty \). Thus, the minimum value occurs at both \( x = 0 \) and \( x = 2 \), giving us: \[ \text{Minimum value of } f(x) = e^{2} - 1 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

The difference between the greatest and the least values of the function f(x)=int_(0)^(x)(at^(2)+1+cos t)dt,a>0 for x in[2,3] is

For the function f(x)=int_(0)^(x)(sin t)/(t)dt where x>0

The difference between the greatest and least values of the function F(x) = int_(0)^(x) (t+1) dt on [1,3] is

The number of critical points of the function f(x)=int_(0)^(x)e^(t)(t-1)(t-2)(t-3)dt

The interval in which the function f(x)=int_(0)^(x) ((t)/(t+2)-1/t)dt will be non- increasing is

In(-4,4) the function f(x)=int_(-10)^(x)(t^(4)-4)e^(-4t)dt has

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. Let y=(x) be the solution curve of the differential equation dy/dx = y...

    Text Solution

    |

  2. Let f (x)=int(2x)/((x^2+1)(x^2+3))dx. if f (3)=1/2(loge5-loge6),then f...

    Text Solution

    |

  3. The minimum value of the function f(x)=int(0)^2e^(|x-t|)dt is:

    Text Solution

    |

  4. Let f:(0,1) rarr IR be a function defined by f(x)=1/(1-e(-x)),and g(x)...

    Text Solution

    |

  5. Let z1=2+3i and z2=3+4i. The set S={z in C:|z-z1|^(2)-|z-z2|^2=|z1-z2|...

    Text Solution

    |

  6. The distance of the point (6,-2 sqrt 2) from the common tangent y = mx...

    Text Solution

    |

  7. Let x, y, z gt 1 and A= [[1,logx y,logx z],[logy x,2,logy z],[logz x,l...

    Text Solution

    |

  8. Let y(x) = (1 + x) (1 + x^2 ) (1 + x^4 ) (1 + x^8 ) (1 + x^16). Then y...

    Text Solution

    |

  9. Let M be the maximum value of the product of two positive integers whe...

    Text Solution

    |

  10. Consider the lines L1 and L2 given by L1:(x-1)/2=(y-3)/1=(z-2)/2 ,L2...

    Text Solution

    |

  11. Let S1 and S2 be respectively the sets of all a in R – {0} for which t...

    Text Solution

    |

  12. The distance of the point P (4, 6 – 2) from the line passing through t...

    Text Solution

    |

  13. The points of intersection of the line ax + by = 0, (a != b) and the ...

    Text Solution

    |

  14. The vector veca=-hati+2hatj+hatk is rotated through a right angle, pas...

    Text Solution

    |

  15. The statement (p^^(~q)) implies (p implies ~q) is

    Text Solution

    |

  16. Let x = 2 be a local minima of the function f(x) = 2x^4 – 18x^2 + 8x +...

    Text Solution

    |

  17. The value of lim(nrarroo)(1+2-3+4+5-6....(3n-2)+(3n-1)-3n)/(sqrt(2n^4+...

    Text Solution

    |

  18. Let veca, vecb and vecc be three non zero vectors such that vec b.vec...

    Text Solution

    |

  19. The vertices a hyperbola H are (pm6, 0) and its eccentricity is sqrt5...

    Text Solution

    |

  20. Let the equation of the plane passing through the line x – 2y – z– 5 =...

    Text Solution

    |