Home
Class 12
MATHS
The vector veca=-hati+2hatj+hatk is rota...

The vector `veca=-hati+2hatj+hatk` is rotated through a right angle, passing through the y-axis in its way and the resulting vector is `vecb`.Then the projection of `3veca+sqrt2b` on `vec c=5hati+4hatj+3hatk` is:

A

`3sqrt2`

B

1

C

`2sqrt3`

D

sqrt6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: 1. **Define the vectors**: Given \( \vec{a} = -\hat{i} + 2\hat{j} + \hat{k} \). 2. **Rotation of vector \( \vec{a} \)**: The vector \( \vec{a} \) is rotated through a right angle about the y-axis to obtain vector \( \vec{b} \). The rotation about the y-axis can be represented using the rotation matrix: \[ R_y(\theta) = \begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix} \] For a right angle rotation (\(\theta = 90^\circ\)), we have: \[ R_y(90^\circ) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix} \] Applying this to \( \vec{a} \): \[ \vec{b} = R_y(90^\circ) \cdot \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \cdot -1 + 0 \cdot 2 + 1 \cdot 1 \\ 0 \cdot -1 + 1 \cdot 2 + 0 \cdot 1 \\ -1 \cdot -1 + 0 \cdot 2 + 0 \cdot 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \] Thus, \( \vec{b} = \hat{i} + 2\hat{j} - \hat{k} \). 3. **Projection of \( 3\vec{a} + \sqrt{2}\vec{b} \)**: We first calculate \( 3\vec{a} + \sqrt{2}\vec{b} \): \[ 3\vec{a} = 3(-\hat{i} + 2\hat{j} + \hat{k}) = -3\hat{i} + 6\hat{j} + 3\hat{k} \] \[ \sqrt{2}\vec{b} = \sqrt{2}(\hat{i} + 2\hat{j} - \hat{k}) = \sqrt{2}\hat{i} + 2\sqrt{2}\hat{j} - \sqrt{2}\hat{k} \] Now, adding these two vectors: \[ 3\vec{a} + \sqrt{2}\vec{b} = (-3 + \sqrt{2})\hat{i} + (6 + 2\sqrt{2})\hat{j} + (3 - \sqrt{2})\hat{k} \] 4. **Define vector \( \vec{c} \)**: Given \( \vec{c} = 5\hat{i} + 4\hat{j} + 3\hat{k} \). 5. **Calculate the projection**: The projection of vector \( \vec{v} \) onto vector \( \vec{c} \) is given by: \[ \text{proj}_{\vec{c}} \vec{v} = \frac{\vec{v} \cdot \vec{c}}{|\vec{c}|^2} \vec{c} \] First, we need to calculate \( \vec{v} \cdot \vec{c} \): \[ \vec{v} = (-3 + \sqrt{2})\hat{i} + (6 + 2\sqrt{2})\hat{j} + (3 - \sqrt{2})\hat{k} \] \[ \vec{v} \cdot \vec{c} = (-3 + \sqrt{2}) \cdot 5 + (6 + 2\sqrt{2}) \cdot 4 + (3 - \sqrt{2}) \cdot 3 \] Simplifying this: \[ = -15 + 5\sqrt{2} + 24 + 8\sqrt{2} + 9 - 3\sqrt{2} = 18 + 10\sqrt{2} \] 6. **Calculate \( |\vec{c}|^2 \)**: \[ |\vec{c}|^2 = 5^2 + 4^2 + 3^2 = 25 + 16 + 9 = 50 \] 7. **Final projection calculation**: \[ \text{proj}_{\vec{c}} \vec{v} = \frac{18 + 10\sqrt{2}}{50} \vec{c} \] 8. **Final answer**: The projection of \( 3\vec{a} + \sqrt{2}\vec{b} \) on \( \vec{c} \) is: \[ \frac{(18 + 10\sqrt{2})}{50} (5\hat{i} + 4\hat{j} + 3\hat{k}) \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

Find the projection oif veca=2hati+3hatj+2hatk on the vector vecb=hati+2hatj+hatk .

The projection of the vector vecA = hat - 2hatj + hatk on the vector vecB = 4hati - 4hatj + 7hatk is

Find the projection of vector veca=5hati-hatj-3hatk on the vector vecb=hati+hatj+hatk .

The vector component of vector vecA =3hati +4hatj +5hatk along vector vecB =hati +hatj +hatk is :

A unit vector in the direction of resultant vector of vecA = -2hati + 3hatj + hatk and vecB = hati + 2 hatj - 4 hatk is

Find the unit vector in the direction of the sum of the vectors veca=2hati+2hatj-5hatk and vecb=2hati+hatj+3hatk .

Find the projection of the vector veca=3hati+2hatj-4hatk on the vector vecb=hati+2hatj+hatk .

The vector vecB= 5hati+2hatj-Shatk is perpendicular to the vector vecA= 3hati+hatj+2hatk if S =

The vector equation of a line passing through the point hati + 2hatj + 3hatk and perpendicular to the vectors hati +hatj + hatk and 2hati - hatj + hatk is

The vector vecB=5hati+2hatj-Shatk is perpendicular to the vector vecA=3hati+hatj+2hatk if S=

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. The distance of the point P (4, 6 – 2) from the line passing through t...

    Text Solution

    |

  2. The points of intersection of the line ax + by = 0, (a != b) and the ...

    Text Solution

    |

  3. The vector veca=-hati+2hatj+hatk is rotated through a right angle, pas...

    Text Solution

    |

  4. The statement (p^^(~q)) implies (p implies ~q) is

    Text Solution

    |

  5. Let x = 2 be a local minima of the function f(x) = 2x^4 – 18x^2 + 8x +...

    Text Solution

    |

  6. The value of lim(nrarroo)(1+2-3+4+5-6....(3n-2)+(3n-1)-3n)/(sqrt(2n^4+...

    Text Solution

    |

  7. Let veca, vecb and vecc be three non zero vectors such that vec b.vec...

    Text Solution

    |

  8. The vertices a hyperbola H are (pm6, 0) and its eccentricity is sqrt5...

    Text Solution

    |

  9. Let the equation of the plane passing through the line x – 2y – z– 5 =...

    Text Solution

    |

  10. If the area enclosed by the parabola P1 : 2y = 5x^2 and P2 : x^2 – y +...

    Text Solution

    |

  11. For some a, b, c in N, let f(x) = ax – 3 and g(x) = x^b + c, x in R. I...

    Text Solution

    |

  12. If the sum of all the solution of tan^(-1)((2x)/(1-x^2))+cot^1((1-x^2...

    Text Solution

    |

  13. Let x and y be distinct integers where 1le x le25 and 1 =< y le 25. Th...

    Text Solution

    |

  14. Let A1, A2, A3 be the three A. P. with the common difference d and hav...

    Text Solution

    |

  15. Let S = {1, 2, 3, 5, 7, 10, 11}. The number of non-empty subsets of S ...

    Text Solution

    |

  16. The constant term in the expansion of (2x+1/x^7+3x^2)^5 is.

    Text Solution

    |

  17. Let S ={alpha:log2(9^(2alpha-4)+13)-log2(5/2.3^(2alpha-4)+1)=2}Then th...

    Text Solution

    |

  18. The integral 16int(1)^(2)(dx)/(x^(3)(x^(2)+2)^(2)) is equal to

    Text Solution

    |

  19. sum(k=0)^(6)"^(51-k)C(3) is equal to

    Text Solution

    |

  20. Let A,B,C be 3times3 matrices such that A is symmetric and B and C are...

    Text Solution

    |