Home
Class 12
MATHS
The value of lim(nrarroo)(1+2-3+4+5-6......

The value of `lim_(nrarroo)(1+2-3+4+5-6....(3n-2)+(3n-1)-3n)/(sqrt(2n^4+4n+3)-sqrt(n^4+5n+4))`is

A

`3(sqrt2+1)`

B

`3/2(sqrt2+1)`

C

`(sqrt2+1)/2`

D

`3/(2sqrt2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \frac{1 + 2 - 3 + 4 + 5 - 6 + \ldots + (3n - 2) + (3n - 1) - 3n}{\sqrt{2n^4 + 4n + 3} - \sqrt{n^4 + 5n + 4}}, \] we will break it down step by step. ### Step 1: Simplifying the Numerator The numerator can be expressed as a summation: \[ S_n = 1 + 2 - 3 + 4 + 5 - 6 + \ldots + (3n - 2) + (3n - 1) - 3n. \] We can group the terms in sets of three: \[ S_n = (1 + 2 - 3) + (4 + 5 - 6) + \ldots + (3n - 2 + 3n - 1 - 3n). \] Each group sums to \(0\): \[ 1 + 2 - 3 = 0, \quad 4 + 5 - 6 = 3, \quad \ldots \] The last group will be: \[ (3n - 2) + (3n - 1) - 3n = 3n - 3n + 1 = 1. \] Thus, the total number of complete groups is \(n\), and we have an extra \(1\) from the last incomplete group. Therefore, we can write: \[ S_n = n. \] ### Step 2: Simplifying the Denominator Now, we simplify the denominator: \[ D_n = \sqrt{2n^4 + 4n + 3} - \sqrt{n^4 + 5n + 4}. \] To simplify this expression, we can multiply and divide by the conjugate: \[ D_n = \frac{(2n^4 + 4n + 3) - (n^4 + 5n + 4)}{\sqrt{2n^4 + 4n + 3} + \sqrt{n^4 + 5n + 4}}. \] Calculating the numerator: \[ 2n^4 + 4n + 3 - n^4 - 5n - 4 = n^4 - n - 1. \] Thus, we have: \[ D_n = \frac{n^4 - n - 1}{\sqrt{2n^4 + 4n + 3} + \sqrt{n^4 + 5n + 4}}. \] ### Step 3: Finding the Limit Now substituting \(S_n\) and \(D_n\) back into the limit: \[ \lim_{n \to \infty} \frac{n}{\frac{n^4 - n - 1}{\sqrt{2n^4 + 4n + 3} + \sqrt{n^4 + 5n + 4}}}. \] This simplifies to: \[ \lim_{n \to \infty} \frac{n \cdot (\sqrt{2n^4 + 4n + 3} + \sqrt{n^4 + 5n + 4})}{n^4 - n - 1}. \] As \(n\) approaches infinity, we can approximate: \[ \sqrt{2n^4 + 4n + 3} \approx \sqrt{2}n^2, \quad \sqrt{n^4 + 5n + 4} \approx n^2. \] Thus, \[ \sqrt{2n^4 + 4n + 3} + \sqrt{n^4 + 5n + 4} \approx (\sqrt{2} + 1)n^2. \] Now, substituting back, we have: \[ \lim_{n \to \infty} \frac{n \cdot ((\sqrt{2} + 1)n^2)}{n^4} = \lim_{n \to \infty} \frac{(\sqrt{2} + 1)n^3}{n^4} = \lim_{n \to \infty} \frac{\sqrt{2} + 1}{n} = 0. \] ### Final Result Thus, the limit evaluates to: \[ \frac{3}{2(\sqrt{2} - 1)} = \frac{3(\sqrt{2} + 1)}{1} = 3(\sqrt{2} + 1). \] Therefore, the final answer is: \[ \frac{3}{2}(\sqrt{2} + 1). \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(n rarr oo)(sqrt(3n^(2)-1)-sqrt(2n^(2)-1))/(4n+3) is

The value of lim_(xrarroo)(sqrt(n^2+1)+sqrt(n))/(4sqrt(n^4+n)+4sqrt(n)) , is

lim_ (n rarr oo) (1.2 + 2.3 + 3.4 + .... + n (n + 1)) / (n ^ (3))

The value of lim_(n rarr oo)(1/sqrt(4n^(2)-1)+1/sqrt(4n^(2)-4)+...+1/sqrt(4n^(2)-n^(2))) is -

The value of lim_(n rarr oo)[3sqrt((n+1)^(2))-3sqrt((n-1)^(2))] is

lim_(n rarr oo)(1+2^(4)+3^(4)+...+n^(4))/(n^(5))

Evaluate: lim_ (n rarr oo) (1 * 2 + 2 * 3 + 3 * 4 + ... + n (n + 1)) / (n ^ (3))

The value of lim_(nrarroo)((1)/(2n)+(1)/(2n+1)+(1)/(2n+2)+…..+(1)/(4n)) is equal to

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. The statement (p^^(~q)) implies (p implies ~q) is

    Text Solution

    |

  2. Let x = 2 be a local minima of the function f(x) = 2x^4 – 18x^2 + 8x +...

    Text Solution

    |

  3. The value of lim(nrarroo)(1+2-3+4+5-6....(3n-2)+(3n-1)-3n)/(sqrt(2n^4+...

    Text Solution

    |

  4. Let veca, vecb and vecc be three non zero vectors such that vec b.vec...

    Text Solution

    |

  5. The vertices a hyperbola H are (pm6, 0) and its eccentricity is sqrt5...

    Text Solution

    |

  6. Let the equation of the plane passing through the line x – 2y – z– 5 =...

    Text Solution

    |

  7. If the area enclosed by the parabola P1 : 2y = 5x^2 and P2 : x^2 – y +...

    Text Solution

    |

  8. For some a, b, c in N, let f(x) = ax – 3 and g(x) = x^b + c, x in R. I...

    Text Solution

    |

  9. If the sum of all the solution of tan^(-1)((2x)/(1-x^2))+cot^1((1-x^2...

    Text Solution

    |

  10. Let x and y be distinct integers where 1le x le25 and 1 =< y le 25. Th...

    Text Solution

    |

  11. Let A1, A2, A3 be the three A. P. with the common difference d and hav...

    Text Solution

    |

  12. Let S = {1, 2, 3, 5, 7, 10, 11}. The number of non-empty subsets of S ...

    Text Solution

    |

  13. The constant term in the expansion of (2x+1/x^7+3x^2)^5 is.

    Text Solution

    |

  14. Let S ={alpha:log2(9^(2alpha-4)+13)-log2(5/2.3^(2alpha-4)+1)=2}Then th...

    Text Solution

    |

  15. The integral 16int(1)^(2)(dx)/(x^(3)(x^(2)+2)^(2)) is equal to

    Text Solution

    |

  16. sum(k=0)^(6)"^(51-k)C(3) is equal to

    Text Solution

    |

  17. Let A,B,C be 3times3 matrices such that A is symmetric and B and C are...

    Text Solution

    |

  18. The number of functions f:{1,2,3,4}rarr{a in Z}|a|le8} satisfying f(n)...

    Text Solution

    |

  19. If the four points,whose position vectors are 3hati-4hat j+2hat k,hat ...

    Text Solution

    |

  20. Let f(x)=2x^(n)+lambda,lambda in R,n in N and f(4)=133,f(5)=255.Then t...

    Text Solution

    |