Home
Class 12
MATHS
Let veca, vecb and vecc be three non ze...

Let `veca, vecb and vecc ` be three non zero vectors such that `vec b.vec c= 0` and `veca times(vecb xx vecc)=(vecb-vecc)/2`. If `vecd` be a vector such that `vecb.vecd = veca .vecb `, then `(veca times vecb).(vecc times vecd)` is equal to

A

`3/4`

B

`1/2`

C

`-1/4`

D

`1/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given vectors and their relationships step by step. ### Step 1: Understand the given conditions We have three non-zero vectors \( \vec{a}, \vec{b}, \vec{c} \) such that: 1. \( \vec{b} \cdot \vec{c} = 0 \) (which means \( \vec{b} \) and \( \vec{c} \) are orthogonal) 2. \( \vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} - \vec{c}}{2} \) ### Step 2: Use the vector triple product identity We can use the vector triple product identity: \[ \vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w}) \vec{v} - (\vec{u} \cdot \vec{v}) \vec{w} \] Applying this to \( \vec{a} \times (\vec{b} \times \vec{c}) \): \[ \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \] Setting this equal to \( \frac{\vec{b} - \vec{c}}{2} \): \[ (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} = \frac{\vec{b}}{2} - \frac{\vec{c}}{2} \] ### Step 3: Equate coefficients From the equation, we can equate coefficients of \( \vec{b} \) and \( \vec{c} \): 1. \( \vec{a} \cdot \vec{c} = \frac{1}{2} \) 2. \( -(\vec{a} \cdot \vec{b}) = -\frac{1}{2} \) which gives \( \vec{a} \cdot \vec{b} = \frac{1}{2} \) ### Step 4: Analyze vector \( \vec{d} \) We are given that \( \vec{b} \cdot \vec{d} = \vec{a} \cdot \vec{b} \). Since \( \vec{a} \cdot \vec{b} = \frac{1}{2} \), we have: \[ \vec{b} \cdot \vec{d} = \frac{1}{2} \] ### Step 5: Calculate \( (\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) \) Using the identity for the dot product of cross products: \[ \vec{u} \cdot (\vec{v} \times \vec{w}) = \vec{v} \cdot (\vec{u} \times \vec{w}) \] We can write: \[ (\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = (\vec{c} \cdot \vec{a}) (\vec{b} \cdot \vec{d}) - (\vec{b} \cdot \vec{a}) (\vec{c} \cdot \vec{d}) \] ### Step 6: Substitute known values Substituting the known values: - \( \vec{c} \cdot \vec{a} = \frac{1}{2} \) - \( \vec{b} \cdot \vec{a} = \frac{1}{2} \) - \( \vec{b} \cdot \vec{d} = \frac{1}{2} \) Thus: \[ (\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) - \left(\frac{1}{2}\right) (\vec{c} \cdot \vec{d}) \] ### Step 7: Determine \( \vec{c} \cdot \vec{d} \) Since \( \vec{b} \cdot \vec{d} = \frac{1}{2} \), we can find \( \vec{c} \cdot \vec{d} \) using the orthogonality condition and the relationships derived. ### Final Calculation Assuming \( \vec{c} \cdot \vec{d} = 0 \) (due to orthogonality), we have: \[ (\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = \frac{1}{4} - 0 = \frac{1}{4} \] ### Conclusion Thus, the final answer is: \[ \boxed{\frac{1}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then:

Let veca vecb and vecc be three non-zero vectors such that veca + vecb + vecc = vec0 and lambda vecb xx veca xx veca + vecbxxvecc + vecc + veca = vec0 then find the value of lambda .

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

let veca, vecb and vecc be three unit vectors such that veca xx (vecb xx vecc) =sqrt(3)/2 (vecb + vecc) . If vecb is not parallel to vecc , then the angle between veca and vecb is:

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. Let x = 2 be a local minima of the function f(x) = 2x^4 – 18x^2 + 8x +...

    Text Solution

    |

  2. The value of lim(nrarroo)(1+2-3+4+5-6....(3n-2)+(3n-1)-3n)/(sqrt(2n^4+...

    Text Solution

    |

  3. Let veca, vecb and vecc be three non zero vectors such that vec b.vec...

    Text Solution

    |

  4. The vertices a hyperbola H are (pm6, 0) and its eccentricity is sqrt5...

    Text Solution

    |

  5. Let the equation of the plane passing through the line x – 2y – z– 5 =...

    Text Solution

    |

  6. If the area enclosed by the parabola P1 : 2y = 5x^2 and P2 : x^2 – y +...

    Text Solution

    |

  7. For some a, b, c in N, let f(x) = ax – 3 and g(x) = x^b + c, x in R. I...

    Text Solution

    |

  8. If the sum of all the solution of tan^(-1)((2x)/(1-x^2))+cot^1((1-x^2...

    Text Solution

    |

  9. Let x and y be distinct integers where 1le x le25 and 1 =< y le 25. Th...

    Text Solution

    |

  10. Let A1, A2, A3 be the three A. P. with the common difference d and hav...

    Text Solution

    |

  11. Let S = {1, 2, 3, 5, 7, 10, 11}. The number of non-empty subsets of S ...

    Text Solution

    |

  12. The constant term in the expansion of (2x+1/x^7+3x^2)^5 is.

    Text Solution

    |

  13. Let S ={alpha:log2(9^(2alpha-4)+13)-log2(5/2.3^(2alpha-4)+1)=2}Then th...

    Text Solution

    |

  14. The integral 16int(1)^(2)(dx)/(x^(3)(x^(2)+2)^(2)) is equal to

    Text Solution

    |

  15. sum(k=0)^(6)"^(51-k)C(3) is equal to

    Text Solution

    |

  16. Let A,B,C be 3times3 matrices such that A is symmetric and B and C are...

    Text Solution

    |

  17. The number of functions f:{1,2,3,4}rarr{a in Z}|a|le8} satisfying f(n)...

    Text Solution

    |

  18. If the four points,whose position vectors are 3hati-4hat j+2hat k,hat ...

    Text Solution

    |

  19. Let f(x)=2x^(n)+lambda,lambda in R,n in N and f(4)=133,f(5)=255.Then t...

    Text Solution

    |

  20. Let Delta,nabla in{^^,vv} be such that (p rarr q)Delta(p nabla q) is a...

    Text Solution

    |