Home
Class 12
MATHS
If the sum of all the solution of tan^(...

If the sum of all the solution of ` tan^(-1)((2x)/(1-x^2))+cot^1((1-x^2)/(2x))= pi/3,-1 lt x lt 1,x != 0` is `alpha - 4/(sqrt3)`,then `alpha` is equal to_________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \tan^{-1}\left(\frac{2x}{1-x^2}\right) + \cot^{-1}\left(\frac{1-x^2}{2x}\right) = \frac{\pi}{3} \] for \( -1 < x < 1 \) and \( x \neq 0 \), we can follow these steps: ### Step 1: Use the identity for cotangent Recall that \(\cot^{-1}(y) = \frac{\pi}{2} - \tan^{-1}(y)\). Therefore, we can rewrite the equation as: \[ \tan^{-1}\left(\frac{2x}{1-x^2}\right) + \left(\frac{\pi}{2} - \tan^{-1}\left(\frac{1-x^2}{2x}\right)\right) = \frac{\pi}{3} \] ### Step 2: Rearranging the equation Rearranging gives us: \[ \tan^{-1}\left(\frac{2x}{1-x^2}\right) - \tan^{-1}\left(\frac{1-x^2}{2x}\right) = \frac{\pi}{3} - \frac{\pi}{2} \] This simplifies to: \[ \tan^{-1}\left(\frac{2x}{1-x^2}\right) - \tan^{-1}\left(\frac{1-x^2}{2x}\right) = -\frac{\pi}{6} \] ### Step 3: Use the tangent subtraction formula Using the tangent subtraction formula, we have: \[ \tan\left(\tan^{-1}(a) - \tan^{-1}(b)\right) = \frac{a - b}{1 + ab} \] Let \( a = \frac{2x}{1-x^2} \) and \( b = \frac{1-x^2}{2x} \). Then: \[ \tan\left(-\frac{\pi}{6}\right) = -\frac{1}{\sqrt{3}} \] ### Step 4: Set up the equation Thus, we can set up the equation: \[ \frac{\frac{2x}{1-x^2} - \frac{1-x^2}{2x}}{1 + \left(\frac{2x}{1-x^2}\right)\left(\frac{1-x^2}{2x}\right)} = -\frac{1}{\sqrt{3}} \] ### Step 5: Simplify the left-hand side The left-hand side simplifies to: \[ \frac{\frac{4x^2 - (1-x^2)^2}{2x(1-x^2)}}{1 + 1 - x^2} = \frac{4x^2 - (1 - 2x^2 + x^4)}{2x(1-x^2)(2-x^2)} \] This leads to: \[ \frac{4x^2 - 1 + 2x^2 - x^4}{2x(1-x^2)(2-x^2)} = \frac{6x^2 - 1 - x^4}{2x(1-x^2)(2-x^2)} \] ### Step 6: Cross-multiply and solve Cross-multiplying gives: \[ (6x^2 - 1 - x^4) \sqrt{3} = -2x(1-x^2)(2-x^2) \] This leads to a polynomial equation in \(x\). ### Step 7: Finding solutions Solving this polynomial equation will yield the values of \(x\) that satisfy the original equation. ### Step 8: Calculate the sum of solutions Once the solutions \(x_1, x_2, \ldots, x_n\) are found, calculate their sum: \[ S = x_1 + x_2 + \ldots + x_n \] ### Step 9: Relate to alpha According to the problem, we have: \[ S = \alpha - \frac{4}{\sqrt{3}} \] Thus, we can find \(\alpha\) by rearranging: \[ \alpha = S + \frac{4}{\sqrt{3}} \] ### Final Step: Calculate alpha After finding \(S\) from the solutions, substitute it back to find \(\alpha\).
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

Solve for x : tan^(-1)(2x)/(1-x^(2))+cot^(-1)(1-x^(2))/(2x))=pi/3, -1 lt x lt 1 .

tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=(pi)/(4) , |x| lt 1

If 1 lt x lt 1 then tan^(-1) (2x)/(1-x^(2)) equals

If tan^(-1)((2x)/(1-x^(2)))+cot^(-1)((1-x^(2))/(2x))=(pi)/(3),x in(0,1), then (x^(4)+(1)/(x^(4))) is equal to

The number of real solution of cot^(-1)sqrt(x(x+4))+cos^(-1)sqrt(x^(2)+4x+1)=(pi)/(2) is equal to

A solution of the equation cot^(-1)2=cot^(-1)x+cot^(-1)(10-x)" where " 1 lt x lt 9 is :

Prove that : tan^(-1)x +tan^(-1). (2x)/(1-x^(2)) = tan^(-1) . (3x-x^(3))/(1-3x^(2)) , |x| lt 1/(sqrt(3))

Solve the following equations : 2tan^(-1) (sin x) = tan^(-1) (2sec x ,) 0 lt x lt pi/2

If x lt -(1)/sqrt(3) , then tan^(-1)(3x-x^(3))/(1-3x^(2)) equals

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. If the area enclosed by the parabola P1 : 2y = 5x^2 and P2 : x^2 – y +...

    Text Solution

    |

  2. For some a, b, c in N, let f(x) = ax – 3 and g(x) = x^b + c, x in R. I...

    Text Solution

    |

  3. If the sum of all the solution of tan^(-1)((2x)/(1-x^2))+cot^1((1-x^2...

    Text Solution

    |

  4. Let x and y be distinct integers where 1le x le25 and 1 =< y le 25. Th...

    Text Solution

    |

  5. Let A1, A2, A3 be the three A. P. with the common difference d and hav...

    Text Solution

    |

  6. Let S = {1, 2, 3, 5, 7, 10, 11}. The number of non-empty subsets of S ...

    Text Solution

    |

  7. The constant term in the expansion of (2x+1/x^7+3x^2)^5 is.

    Text Solution

    |

  8. Let S ={alpha:log2(9^(2alpha-4)+13)-log2(5/2.3^(2alpha-4)+1)=2}Then th...

    Text Solution

    |

  9. The integral 16int(1)^(2)(dx)/(x^(3)(x^(2)+2)^(2)) is equal to

    Text Solution

    |

  10. sum(k=0)^(6)"^(51-k)C(3) is equal to

    Text Solution

    |

  11. Let A,B,C be 3times3 matrices such that A is symmetric and B and C are...

    Text Solution

    |

  12. The number of functions f:{1,2,3,4}rarr{a in Z}|a|le8} satisfying f(n)...

    Text Solution

    |

  13. If the four points,whose position vectors are 3hati-4hat j+2hat k,hat ...

    Text Solution

    |

  14. Let f(x)=2x^(n)+lambda,lambda in R,n in N and f(4)=133,f(5)=255.Then t...

    Text Solution

    |

  15. Let Delta,nabla in{^^,vv} be such that (p rarr q)Delta(p nabla q) is a...

    Text Solution

    |

  16. The equations of two sides of a variable triangle are x=0 and y=3,and ...

    Text Solution

    |

  17. Let T and C respectively be the transverse and conjugate axes of the h...

    Text Solution

    |

  18. The number of numbers,stricily between 5000 and 10000 can be formed us...

    Text Solution

    |

  19. The shortest distance between the liens x+1=2y=-12z and x=y+2=6z-6 is

    Text Solution

    |

  20. .Let z be a complex number such that |(z-2i)/(z+i)|=2,z!=-i.Then z lie...

    Text Solution

    |