Home
Class 12
MATHS
Let S ={alpha:log2(9^(2alpha-4)+13)-log2...

Let `S ={alpha:log_2(9^(2alpha-4)+13)-log_2(5/2.3^(2alpha-4)+1)=2}`Then the maximum value of `beta` for which the equation `x^2-2 (sum_(a in s)a)^2 x+sum_(a in s)(alpha+1)^2beta=0` has real roots, is ______ .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will follow the instructions provided in the video transcript and clarify the calculations. ### Step 1: Simplifying the Logarithmic Equation We start with the equation given in the problem: \[ \log_2(9^{2\alpha - 4} + 13) - \log_2\left(\frac{5}{2} \cdot 3^{2\alpha - 4} + 1\right) = 2 \] Using the property of logarithms that states \(\log_a(b) - \log_a(c) = \log_a\left(\frac{b}{c}\right)\), we can rewrite the equation as: \[ \log_2\left(\frac{9^{2\alpha - 4} + 13}{\frac{5}{2} \cdot 3^{2\alpha - 4} + 1}\right) = 2 \] ### Step 2: Exponentiating Both Sides Exponentiating both sides with base 2 gives us: \[ \frac{9^{2\alpha - 4} + 13}{\frac{5}{2} \cdot 3^{2\alpha - 4} + 1} = 2^2 = 4 \] ### Step 3: Cross-Multiplying Cross-multiplying results in: \[ 9^{2\alpha - 4} + 13 = 4\left(\frac{5}{2} \cdot 3^{2\alpha - 4} + 1\right) \] This simplifies to: \[ 9^{2\alpha - 4} + 13 = 10 \cdot 3^{2\alpha - 4} + 4 \] ### Step 4: Rearranging the Equation Rearranging gives: \[ 9^{2\alpha - 4} - 10 \cdot 3^{2\alpha - 4} + 9 = 0 \] ### Step 5: Substituting Variables Let \(y = 3^{2\alpha - 4}\). Then, \(9^{2\alpha - 4} = y^2\). The equation becomes: \[ y^2 - 10y + 9 = 0 \] ### Step 6: Solving the Quadratic Equation Using the quadratic formula \(y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): Here, \(a = 1\), \(b = -10\), and \(c = 9\): \[ y = \frac{10 \pm \sqrt{(-10)^2 - 4 \cdot 1 \cdot 9}}{2 \cdot 1} = \frac{10 \pm \sqrt{100 - 36}}{2} = \frac{10 \pm \sqrt{64}}{2} = \frac{10 \pm 8}{2} \] Thus, we find: \[ y = 9 \quad \text{or} \quad y = 1 \] ### Step 7: Finding Corresponding Values of \(\alpha\) 1. If \(y = 9\): \[ 3^{2\alpha - 4} = 9 \implies 2\alpha - 4 = 2 \implies 2\alpha = 6 \implies \alpha = 3 \] 2. If \(y = 1\): \[ 3^{2\alpha - 4} = 1 \implies 2\alpha - 4 = 0 \implies 2\alpha = 4 \implies \alpha = 2 \] Thus, the values of \(\alpha\) are \(2\) and \(3\). ### Step 8: Summing the Values of \(\alpha\) The sum of the values of \(\alpha\) in set \(S\) is: \[ \sum_{a \in S} a = 2 + 3 = 5 \] ### Step 9: Formulating the Quadratic Equation Now we substitute this sum into the quadratic equation: \[ x^2 - 2 \cdot 5^2 x + \sum_{a \in S} (\alpha + 1)^2 \beta = 0 \] Calculating \(\sum_{a \in S} (\alpha + 1)^2\): \[ (2 + 1)^2 + (3 + 1)^2 = 3^2 + 4^2 = 9 + 16 = 25 \] Thus, the equation becomes: \[ x^2 - 50x + 25\beta = 0 \] ### Step 10: Condition for Real Roots For the quadratic equation to have real roots, the discriminant must be non-negative: \[ D = b^2 - 4ac \geq 0 \] Calculating the discriminant: \[ 50^2 - 4 \cdot 1 \cdot 25\beta \geq 0 \] This simplifies to: \[ 2500 - 100\beta \geq 0 \implies 2500 \geq 100\beta \implies \beta \leq 25 \] ### Conclusion The maximum value of \(\beta\) for which the equation has real roots is: \[ \boxed{25} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of equation 6x^(2)+x-2=0 , find the value of (alpha)/(beta)+(beta)/(alpha) :

If alpha and beta are roots of equation (log_(3)x)^(2)-4(log_(3)x)+2=0 then The value of alpha beta is

If alpha, beta are the roots of equation 3x^(2)-4x+2=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha,beta,gamma,delta are the roots of the equation 3x^(4)-8x^(3)+2x^(2)-9=0 then sum alpha beta=

If alpha and beta are roots of the equation x^(2)+x-3=0 then value of alpha^(3)-4 beta^(2)+24 is

If alpha and beta are the roots of the equation x^(2)-2x+4=0, then alpha^(9)+beta^(9) is equal to

If alpha and beta are the roots of equation 2x^(2)-3x+5=0 then find the value of alpha^(2)beta+beta^(2)alpha

Let alpha and beta be two real roots of the equation 5 cot ^(2) x- 3 cot x-1=0, then cot ^(2)(alpha + beta)=

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. Let S = {1, 2, 3, 5, 7, 10, 11}. The number of non-empty subsets of S ...

    Text Solution

    |

  2. The constant term in the expansion of (2x+1/x^7+3x^2)^5 is.

    Text Solution

    |

  3. Let S ={alpha:log2(9^(2alpha-4)+13)-log2(5/2.3^(2alpha-4)+1)=2}Then th...

    Text Solution

    |

  4. The integral 16int(1)^(2)(dx)/(x^(3)(x^(2)+2)^(2)) is equal to

    Text Solution

    |

  5. sum(k=0)^(6)"^(51-k)C(3) is equal to

    Text Solution

    |

  6. Let A,B,C be 3times3 matrices such that A is symmetric and B and C are...

    Text Solution

    |

  7. The number of functions f:{1,2,3,4}rarr{a in Z}|a|le8} satisfying f(n)...

    Text Solution

    |

  8. If the four points,whose position vectors are 3hati-4hat j+2hat k,hat ...

    Text Solution

    |

  9. Let f(x)=2x^(n)+lambda,lambda in R,n in N and f(4)=133,f(5)=255.Then t...

    Text Solution

    |

  10. Let Delta,nabla in{^^,vv} be such that (p rarr q)Delta(p nabla q) is a...

    Text Solution

    |

  11. The equations of two sides of a variable triangle are x=0 and y=3,and ...

    Text Solution

    |

  12. Let T and C respectively be the transverse and conjugate axes of the h...

    Text Solution

    |

  13. The number of numbers,stricily between 5000 and 10000 can be formed us...

    Text Solution

    |

  14. The shortest distance between the liens x+1=2y=-12z and x=y+2=6z-6 is

    Text Solution

    |

  15. .Let z be a complex number such that |(z-2i)/(z+i)|=2,z!=-i.Then z lie...

    Text Solution

    |

  16. If the function f(x)={((1+|cos x|)|(lambda)/(|cos x|),0 lt x lt (pi)/(...

    Text Solution

    |

  17. Let A=[((1)/(sqrt(10)),(3)/(sqrt(10))),((sqrt(-3))/(sqrt(10)),(1)/(sqr...

    Text Solution

    |

  18. The foot of perpendicular of the point (2,0,5) on the line (x+1)/(2)=(...

    Text Solution

    |

  19. Let f:R rarr R be a function defined by f(x)=log(m) {sqrt(2)(sin x-cos...

    Text Solution

    |

  20. Let the function f(x)=2x^(3)+(2p-7)x^(2)+3(2p-9)x-6 have a maxima for ...

    Text Solution

    |