Home
Class 12
MATHS
The integral 16int(1)^(2)(dx)/(x^(3)(x^(...

The integral `16int_(1)^(2)(dx)/(x^(3)(x^(2)+2)^(2))` is equal to

A

`(11)/(6)-log_(e)4`

B

`(11)/(12)+log_(e)4`

C

`(11)/(6)+log_(e)4`

D

`(11)/(12)-log_(e)4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ 16 \int_{1}^{2} \frac{dx}{x^3 (x^2 + 2)^2} \] we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = 16 \int_{1}^{2} \frac{dx}{x^3 (x^2 + 2)^2} \] ### Step 2: Substitution Let \( t = x^2 + 2 \). Then, we differentiate to find \( dt \): \[ dt = 2x \, dx \quad \Rightarrow \quad dx = \frac{dt}{2x} \] Now, we also need to change the limits of integration. When \( x = 1 \): \[ t = 1^2 + 2 = 3 \] When \( x = 2 \): \[ t = 2^2 + 2 = 6 \] ### Step 3: Express \( x \) in terms of \( t \) From \( t = x^2 + 2 \), we can express \( x^2 \) as: \[ x^2 = t - 2 \quad \Rightarrow \quad x = \sqrt{t - 2} \] ### Step 4: Substitute into the Integral Now we substitute everything back into the integral: \[ I = 16 \int_{3}^{6} \frac{1}{(\sqrt{t - 2})^3 (t)^2} \cdot \frac{dt}{2\sqrt{t - 2}} \] This simplifies to: \[ I = 16 \int_{3}^{6} \frac{1}{2(t - 2)^{2} t^2} \, dt \] ### Step 5: Simplify the Integral Now we can factor out the constants: \[ I = 8 \int_{3}^{6} \frac{1}{(t - 2)^{2} t^2} \, dt \] ### Step 6: Split the Integral We can split the integral into two parts: \[ I = 8 \left( \int_{3}^{6} \frac{1}{(t - 2)^{2}} \, dt - \int_{3}^{6} \frac{1}{t^2} \, dt \right) \] ### Step 7: Evaluate the Integrals 1. For the first integral: \[ \int \frac{1}{(t - 2)^{2}} \, dt = -\frac{1}{t - 2} \] Evaluating from 3 to 6 gives: \[ -\left[ \frac{1}{6 - 2} - \frac{1}{3 - 2} \right] = -\left[ \frac{1}{4} - 1 \right] = -\left[ \frac{1}{4} - \frac{4}{4} \right] = -\left[ -\frac{3}{4} \right] = \frac{3}{4} \] 2. For the second integral: \[ \int \frac{1}{t^2} \, dt = -\frac{1}{t} \] Evaluating from 3 to 6 gives: \[ -\left[ \frac{1}{6} - \frac{1}{3} \right] = -\left[ \frac{1}{6} - \frac{2}{6} \right] = -\left[ -\frac{1}{6} \right] = \frac{1}{6} \] ### Step 8: Combine the Results Now, we combine the results: \[ I = 8 \left( \frac{3}{4} - \frac{1}{6} \right) \] Finding a common denominator (12): \[ I = 8 \left( \frac{9}{12} - \frac{2}{12} \right) = 8 \cdot \frac{7}{12} = \frac{56}{12} = \frac{14}{3} \] ### Final Answer Thus, the value of the integral is: \[ \frac{14}{3} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

The value of definite integral int_(1/3)^(2/3)(ln x)/(ln(x-x^(2)))dx is equal to

The value of definite integral int_(1/3)^(2/3)(ln x)/(ln(x-x^(2)))dx is equal to:

The value fo the integral I=int_(0)^(oo)(dx)/((1+x^(2020))(1+x^(2))) is equal to kpi , then the value of 16k is equal to

The value of definite integral int_(1/3)^(2/3)(ln x)/(ln(x-x^(2)))dx is equal to :

The value of the integral inte^(x^(2)+(1)/(2))(2x^(2)-(1)/(x)+1)dx is equal to (where C is the constant of integration)

The value of the integral I=int(2x^(9)+x^(10))/((x^(2)+x^(3))^(3))dx is equal to (where, C is the constant of integration)

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to (where C is a constant of integration)

int(dx)/((x^(3)-1)^((2)/(3))x^(2)) is equal to

The integral int(1)/(4sqrt((x-1)^(3)(x+2)^(5)) dx is equal to (where c is a constant of integration)

int(x+1)/(2x^((3)/(2)))dx is equal to

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. The constant term in the expansion of (2x+1/x^7+3x^2)^5 is.

    Text Solution

    |

  2. Let S ={alpha:log2(9^(2alpha-4)+13)-log2(5/2.3^(2alpha-4)+1)=2}Then th...

    Text Solution

    |

  3. The integral 16int(1)^(2)(dx)/(x^(3)(x^(2)+2)^(2)) is equal to

    Text Solution

    |

  4. sum(k=0)^(6)"^(51-k)C(3) is equal to

    Text Solution

    |

  5. Let A,B,C be 3times3 matrices such that A is symmetric and B and C are...

    Text Solution

    |

  6. The number of functions f:{1,2,3,4}rarr{a in Z}|a|le8} satisfying f(n)...

    Text Solution

    |

  7. If the four points,whose position vectors are 3hati-4hat j+2hat k,hat ...

    Text Solution

    |

  8. Let f(x)=2x^(n)+lambda,lambda in R,n in N and f(4)=133,f(5)=255.Then t...

    Text Solution

    |

  9. Let Delta,nabla in{^^,vv} be such that (p rarr q)Delta(p nabla q) is a...

    Text Solution

    |

  10. The equations of two sides of a variable triangle are x=0 and y=3,and ...

    Text Solution

    |

  11. Let T and C respectively be the transverse and conjugate axes of the h...

    Text Solution

    |

  12. The number of numbers,stricily between 5000 and 10000 can be formed us...

    Text Solution

    |

  13. The shortest distance between the liens x+1=2y=-12z and x=y+2=6z-6 is

    Text Solution

    |

  14. .Let z be a complex number such that |(z-2i)/(z+i)|=2,z!=-i.Then z lie...

    Text Solution

    |

  15. If the function f(x)={((1+|cos x|)|(lambda)/(|cos x|),0 lt x lt (pi)/(...

    Text Solution

    |

  16. Let A=[((1)/(sqrt(10)),(3)/(sqrt(10))),((sqrt(-3))/(sqrt(10)),(1)/(sqr...

    Text Solution

    |

  17. The foot of perpendicular of the point (2,0,5) on the line (x+1)/(2)=(...

    Text Solution

    |

  18. Let f:R rarr R be a function defined by f(x)=log(m) {sqrt(2)(sin x-cos...

    Text Solution

    |

  19. Let the function f(x)=2x^(3)+(2p-7)x^(2)+3(2p-9)x-6 have a maxima for ...

    Text Solution

    |

  20. Let vec a=-hat i-hat j+hat k,vec a*vec b=1 and vec a timesvec b=hat i-...

    Text Solution

    |