Home
Class 12
MATHS
If the four points,whose position vector...

If the four points,whose position vectors are `3hati-4hat j+2hat k,hat i+2hat j-hat k,-2hat i-hat j+3hat k` and `5hat i-2alphahat j+4hat k` are coplanar,then `alpha` is equal to

A

`(107)/(17)`

B

`(73)/(17)`

C

`-(73)/(17)`

D

`-(107)/(17)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( \alpha \) such that the four points with given position vectors are coplanar, we can use the concept of determinants. The position vectors of the points are: 1. \( \mathbf{A} = 3\hat{i} - 4\hat{j} + 2\hat{k} \) 2. \( \mathbf{B} = \hat{i} + 2\hat{j} - \hat{k} \) 3. \( \mathbf{C} = -2\hat{i} - \hat{j} + 3\hat{k} \) 4. \( \mathbf{D} = 5\hat{i} - 2\alpha\hat{j} + 4\hat{k} \) The points are coplanar if the scalar triple product of the vectors formed by these points is zero. We can express this condition using a determinant: \[ \begin{vmatrix} 3 & -4 & 2 \\ 1 & 2 & -1 \\ -2 & -1 & 3 \\ 5 & -2\alpha & 4 \end{vmatrix} = 0 \] ### Step 1: Set up the determinant We will set up the determinant using the coordinates of the vectors: \[ \begin{vmatrix} 3 & -4 & 2 \\ 1 & 2 & -1 \\ -2 & -1 & 3 \\ 5 & -2\alpha & 4 \end{vmatrix} \] ### Step 2: Expand the determinant We can expand the determinant using the first row: \[ = 3 \begin{vmatrix} 2 & -1 \\ -1 & 3 \end{vmatrix} - (-4) \begin{vmatrix} 1 & -1 \\ -2 & 3 \end{vmatrix} + 2 \begin{vmatrix} 1 & 2 \\ -2 & -1 \end{vmatrix} - 5 \begin{vmatrix} 1 & 2 \\ -2 & -1 \end{vmatrix} \] ### Step 3: Calculate the 2x2 determinants Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 2 & -1 \\ -1 & 3 \end{vmatrix} = (2)(3) - (-1)(-1) = 6 - 1 = 5 \) 2. \( \begin{vmatrix} 1 & -1 \\ -2 & 3 \end{vmatrix} = (1)(3) - (-1)(-2) = 3 - 2 = 1 \) 3. \( \begin{vmatrix} 1 & 2 \\ -2 & -1 \end{vmatrix} = (1)(-1) - (2)(-2) = -1 + 4 = 3 \) ### Step 4: Substitute back into the determinant Now substituting back into the determinant: \[ = 3(5) + 4(1) + 2(3) - 5(3) \] Calculating this gives: \[ = 15 + 4 + 6 - 15 = 10 - 15 + 4 = 4 - 15 = -11 + 4 = -7 \] ### Step 5: Include \( \alpha \) and set the determinant to zero Now we include \( \alpha \): \[ = 3(5) + 4(1) + 2(3) - 5(3) + 2\alpha(-6) = 0 \] This simplifies to: \[ -6\alpha + 10 = 0 \] ### Step 6: Solve for \( \alpha \) Solving for \( \alpha \): \[ -6\alpha = -10 \implies \alpha = \frac{10}{6} = \frac{5}{3} \] Thus, the value of \( \alpha \) is: \[ \alpha = \frac{5}{3} \] ### Final Answer The value of \( \alpha \) is \( \frac{5}{3} \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

The four points whose position vector are 6hat i-7hat j,16hat i-29hat j-4hat k,3hat i-6hat k,2hat i+5hat j+10k are

Show that four points whose position vectors are 6hat i-7hat j,16i-19hat j-4hat k,3hat i-6hat k,2hat i-5hat j+10hat k are coplanar.

Prove that the four points having position vectors are coplanar: 2hat i-hat j+hat k,hat i-3hat j-5hat k and 3hat i-4hat j-4hat k

Prove that the four points having position vectors are non-coplanar: hat i+2hat j+3hat k,2hat i+hat j+3hat k and hat i+hat j+hat k

Prove that the four points having position vectors are coplanar: hat i+hat j+hat k,2hat i+3hat j-hat k and -hat i-2hat j+2hat k

If the four points with positing vectors,-2hat i+hat j+hat k,hat i+hat j+hat k,hat j-hat k and lambdahat j+hat k are coplanar,then lambda is equal to

Show that the points whose position vectors are 5hat i+5hat k,2hat i+hat j+3hat k and -4hat i+3hat j-hat k are collinear

The value of p so that vectors 2hat i-hat j+hat k , hat i+2hat j-3hat k and 3hat i+phat j+5hat k are coplanar is

Prove that point hat i+2hat j-3hat k,2hat i-hat j+hat k and 2hat i+5hat j-hat k from a triangle in space.

Find the value of lambda for which the four points with position vectors -hat j-hat k,4hat i+5hat j+lambdahat k,3hat i+9hat j+4hat k and 4hat i+4hat j+4hat k are coplanar.

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. Let A,B,C be 3times3 matrices such that A is symmetric and B and C are...

    Text Solution

    |

  2. The number of functions f:{1,2,3,4}rarr{a in Z}|a|le8} satisfying f(n)...

    Text Solution

    |

  3. If the four points,whose position vectors are 3hati-4hat j+2hat k,hat ...

    Text Solution

    |

  4. Let f(x)=2x^(n)+lambda,lambda in R,n in N and f(4)=133,f(5)=255.Then t...

    Text Solution

    |

  5. Let Delta,nabla in{^^,vv} be such that (p rarr q)Delta(p nabla q) is a...

    Text Solution

    |

  6. The equations of two sides of a variable triangle are x=0 and y=3,and ...

    Text Solution

    |

  7. Let T and C respectively be the transverse and conjugate axes of the h...

    Text Solution

    |

  8. The number of numbers,stricily between 5000 and 10000 can be formed us...

    Text Solution

    |

  9. The shortest distance between the liens x+1=2y=-12z and x=y+2=6z-6 is

    Text Solution

    |

  10. .Let z be a complex number such that |(z-2i)/(z+i)|=2,z!=-i.Then z lie...

    Text Solution

    |

  11. If the function f(x)={((1+|cos x|)|(lambda)/(|cos x|),0 lt x lt (pi)/(...

    Text Solution

    |

  12. Let A=[((1)/(sqrt(10)),(3)/(sqrt(10))),((sqrt(-3))/(sqrt(10)),(1)/(sqr...

    Text Solution

    |

  13. The foot of perpendicular of the point (2,0,5) on the line (x+1)/(2)=(...

    Text Solution

    |

  14. Let f:R rarr R be a function defined by f(x)=log(m) {sqrt(2)(sin x-cos...

    Text Solution

    |

  15. Let the function f(x)=2x^(3)+(2p-7)x^(2)+3(2p-9)x-6 have a maxima for ...

    Text Solution

    |

  16. Let vec a=-hat i-hat j+hat k,vec a*vec b=1 and vec a timesvec b=hat i-...

    Text Solution

    |

  17. Let y=y(t) be a solution of the differential equation (dy)/(dt)+alpha ...

    Text Solution

    |

  18. Let N be the sum of the numbers appeared when two fair dice are rolled...

    Text Solution

    |

  19. A triangle is formed by X -axis, Y -axis and the line 3x+4y=60.Then th...

    Text Solution

    |

  20. If int((1)/(3))^(3)|log(e)x|dx=(m)/(n)log(e)(n^2/e), where m and n are...

    Text Solution

    |