Home
Class 12
MATHS
Let A=[((1)/(sqrt(10)),(3)/(sqrt(10))),(...

Let `A=[((1)/(sqrt(10)),(3)/(sqrt(10))),((sqrt(-3))/(sqrt(10)),(1)/(sqrt(10)))],` and B=Let `A=[((1,-i)),((0,1))],` where `i =sqrt(-1)`. If `M=A^(T)BA`,then the inverse of the matrix `AM^(2023)A^(T)` is

A

`[(1,-2023i),(0,1)]`

B

`[(1,0),(2023i,1)]`

C

`[(1,2023i),(0,1)]`

D

`[(1,0),(2023i,1)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to follow these steps: ### Step 1: Define the matrices A and B Given: \[ A = \begin{pmatrix} \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{-3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -i \\ 0 & 1 \end{pmatrix} \] ### Step 2: Compute the transpose of matrix A The transpose of matrix \( A \) is: \[ A^T = \begin{pmatrix} \frac{1}{\sqrt{10}} & \frac{-3}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \end{pmatrix} \] ### Step 3: Compute the product \( A^T B A \) We first compute the product \( B A \): \[ B A = \begin{pmatrix} 1 & -i \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{-3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{10}} + 3i \cdot \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} - i \cdot \frac{3}{\sqrt{10}} \\ 0 & \frac{1}{\sqrt{10}} \end{pmatrix} \] Calculating the entries: \[ B A = \begin{pmatrix} \frac{1 + 3i}{\sqrt{10}} & \frac{3 - 3i}{\sqrt{10}} \\ 0 & \frac{1}{\sqrt{10}} \end{pmatrix} \] Now, we compute \( A^T (B A) \): \[ M = A^T B A = \begin{pmatrix} \frac{1}{\sqrt{10}} & \frac{-3}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \end{pmatrix} \begin{pmatrix} \frac{1 + 3i}{\sqrt{10}} & \frac{3 - 3i}{\sqrt{10}} \\ 0 & \frac{1}{\sqrt{10}} \end{pmatrix} \] Calculating the entries of \( M \): 1. First row, first column: \[ \frac{1}{\sqrt{10}} \cdot \frac{1 + 3i}{\sqrt{10}} + \frac{-3}{\sqrt{10}} \cdot 0 = \frac{1 + 3i}{10} \] 2. First row, second column: \[ \frac{1}{\sqrt{10}} \cdot \frac{3 - 3i}{\sqrt{10}} + \frac{-3}{\sqrt{10}} \cdot \frac{1}{\sqrt{10}} = \frac{3 - 3i - 3}{10} = \frac{-3i}{10} \] 3. Second row, first column: \[ \frac{3}{\sqrt{10}} \cdot \frac{1 + 3i}{\sqrt{10}} + \frac{1}{\sqrt{10}} \cdot 0 = \frac{3(1 + 3i)}{10} = \frac{3 + 9i}{10} \] 4. Second row, second column: \[ \frac{3}{\sqrt{10}} \cdot \frac{3 - 3i}{\sqrt{10}} + \frac{1}{\sqrt{10}} \cdot \frac{1}{\sqrt{10}} = \frac{9 - 9i + 1}{10} = \frac{10 - 9i}{10} \] Thus, we have: \[ M = \begin{pmatrix} \frac{1 + 3i}{10} & \frac{-3i}{10} \\ \frac{3 + 9i}{10} & \frac{10 - 9i}{10} \end{pmatrix} \] ### Step 4: Compute \( M^{2023} \) Since \( M \) can be expressed in terms of \( A^T \) and \( B \), we observe that: \[ M^{2023} = (A^T B A)^{2023} = A^T B^{2023} A \] ### Step 5: Compute \( B^{2023} \) From the pattern observed in the powers of \( B \): \[ B^n = \begin{pmatrix} 1 & -ni \\ 0 & 1 \end{pmatrix} \] Thus, \[ B^{2023} = \begin{pmatrix} 1 & -2023i \\ 0 & 1 \end{pmatrix} \] ### Step 6: Compute the inverse of \( AM^{2023}A^T \) We have: \[ AM^{2023}A^T = A (A^T B^{2023} A) A^T = A A^T B^{2023} = I B^{2023} = B^{2023} \] Thus, the inverse is: \[ (AM^{2023}A^T)^{-1} = (B^{2023})^{-1} = \begin{pmatrix} 1 & 2023i \\ 0 & 1 \end{pmatrix} \] ### Final Answer The inverse of the matrix \( AM^{2023}A^T \) is: \[ \begin{pmatrix} 1 & 2023i \\ 0 & 1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

(1)/(sqrt(11-2sqrt(30)))-(3)/(sqrt(7-2sqrt(10)))-(4)/(sqrt(8+4sqrt(3)))

sqrt(x-6)-sqrt(10-x)>=1

(sqrt(3)+i)/((1+i)(1+sqrt(3)i))|=

The value of (1)/(sqrt(12-sqrt(140)))-(1)/(sqrt(8-sqrt(60)))-(2)/(sqrt(10+sqrt(84)))

(1)/(sin10^(@))-(sqrt(3))/(cos10^(@))=

(i)1/sqrt(2)+sqrt(3)+1/sqrt(2)

Simplify: (1)/(sqrt(11-2sqrt(30)))*(3)/(sqrt(7-2sqrt(10)))(4)/(sqrt(8+4sqrt(3)))

log((1+i sqrt(3))/(1-i sqrt(3)))

sin^(-1)(1/sqrt5)+cos^(-1)(3/sqrt(10))

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. .Let z be a complex number such that |(z-2i)/(z+i)|=2,z!=-i.Then z lie...

    Text Solution

    |

  2. If the function f(x)={((1+|cos x|)|(lambda)/(|cos x|),0 lt x lt (pi)/(...

    Text Solution

    |

  3. Let A=[((1)/(sqrt(10)),(3)/(sqrt(10))),((sqrt(-3))/(sqrt(10)),(1)/(sqr...

    Text Solution

    |

  4. The foot of perpendicular of the point (2,0,5) on the line (x+1)/(2)=(...

    Text Solution

    |

  5. Let f:R rarr R be a function defined by f(x)=log(m) {sqrt(2)(sin x-cos...

    Text Solution

    |

  6. Let the function f(x)=2x^(3)+(2p-7)x^(2)+3(2p-9)x-6 have a maxima for ...

    Text Solution

    |

  7. Let vec a=-hat i-hat j+hat k,vec a*vec b=1 and vec a timesvec b=hat i-...

    Text Solution

    |

  8. Let y=y(t) be a solution of the differential equation (dy)/(dt)+alpha ...

    Text Solution

    |

  9. Let N be the sum of the numbers appeared when two fair dice are rolled...

    Text Solution

    |

  10. A triangle is formed by X -axis, Y -axis and the line 3x+4y=60.Then th...

    Text Solution

    |

  11. If int((1)/(3))^(3)|log(e)x|dx=(m)/(n)log(e)(n^2/e), where m and n are...

    Text Solution

    |

  12. Suppose Anil's mother wants to gave 5 whole fruits to Anil from a bask...

    Text Solution

    |

  13. Point P(-3,2),Q(9,10) and R(alpha,4) lie on a circle C with PR as its ...

    Text Solution

    |

  14. If m and n respectively are the numbers of positive and negative value...

    Text Solution

    |

  15. The remainder when (2023)^(2023) is divided by 35 is

    Text Solution

    |

  16. 25% of the population are smokers.A smoker has 27 times more chances t...

    Text Solution

    |

  17. If the shortest distance between the line joining the points (1,2,3) a...

    Text Solution

    |

  18. Let alpha in R and let alpha,beta be the roots of the equation x^(2)+6...

    Text Solution

    |

  19. For the two positive numbers a,b,if a,b and (1)/(18) are in a geometri...

    Text Solution

    |

  20. If the coefficient of x^(15) in expansion of (ax^(3)+(1)/(bx^(1/3)))^(...

    Text Solution

    |