Home
Class 12
MATHS
Let vec a=-hat i-hat j+hat k,vec a*vec b...

Let `vec a=-hat i-hat j+hat k,vec a*vec b=1` and `vec a timesvec b=hat i-hat j`.Then `vec a-6vec b` is equal to

A

`3(hat i-hat j-hat k)`

B

`3(hat i-hat j+hat k)`

C

`3(hat i+hat j-hat k),`

D

`3(hat i+hat j+hat k)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \( \vec{a} - 6\vec{b} \) given the vectors and their relationships. Let's break down the solution step by step. ### Step 1: Define the vectors We are given: \[ \vec{a} = -\hat{i} - \hat{j} + \hat{k} \] Let \( \vec{b} = x\hat{i} + y\hat{j} + z\hat{k} \). ### Step 2: Use the dot product condition We know that: \[ \vec{a} \cdot \vec{b} = 1 \] Calculating the dot product: \[ (-1)(x) + (-1)(y) + (1)(z) = 1 \] This simplifies to: \[ -z - x - y = 1 \quad \text{(Equation 1)} \] ### Step 3: Use the cross product condition We also know that: \[ \vec{a} \times \vec{b} = \hat{i} - \hat{j} \] Calculating the cross product using the determinant: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & -1 & 1 \\ x & y & z \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \left((-1)z - (1)(y)\right) - \hat{j} \left((-1)z - (1)(x)\right) + \hat{k} \left((-1)(y) - (-1)(x)\right) \] This simplifies to: \[ = \hat{i}(-z - y) - \hat{j}(-z - x) + \hat{k}(-y + x) \] Setting this equal to \( \hat{i} - \hat{j} \): \[ -z - y = 1 \quad \text{(Equation 2)} \] \[ -z - x = -1 \quad \text{(Equation 3)} \] \[ -x + y = 0 \quad \text{(Equation 4)} \] ### Step 4: Solve the equations From Equation 4, we have: \[ y = x \] Substituting \( y = x \) into Equation 1: \[ -z - x - x = 1 \Rightarrow -z - 2x = 1 \Rightarrow z = -2x - 1 \quad \text{(Equation 5)} \] Substituting \( y = x \) into Equation 2: \[ -z - x = 1 \Rightarrow -z = 1 + x \Rightarrow z = -1 - x \quad \text{(Equation 6)} \] Equating Equations 5 and 6: \[ -2x - 1 = -1 - x \] Solving this gives: \[ -2x = -x \Rightarrow x = 0 \] Then substituting \( x = 0 \) back into Equation 4 gives: \[ y = 0 \] And substituting \( x = 0 \) into Equation 6 gives: \[ z = -1 \] Thus, we have: \[ \vec{b} = 0\hat{i} + 0\hat{j} - 1\hat{k} = -\hat{k} \] ### Step 5: Calculate \( \vec{a} - 6\vec{b} \) Now substituting \( \vec{b} \) into the expression: \[ \vec{a} - 6\vec{b} = (-\hat{i} - \hat{j} + \hat{k}) - 6(-\hat{k}) \] This simplifies to: \[ = -\hat{i} - \hat{j} + \hat{k} + 6\hat{k} = -\hat{i} - \hat{j} + 7\hat{k} \] ### Final Result Thus, the final result is: \[ \vec{a} - 6\vec{b} = -\hat{i} - \hat{j} + 7\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

vec a = (hat i + hat j + hat k), vec a * vec b = 1 and vec a xxvec b = hat j-hat k. Then vec b is

If vec a= hat i+ hat j+ hat k , vec adot vec b=2 and vec ax vec b=2 hat i+ hat j-3 hat k , then vec a+ vec b=5 hat i-4 hat j+2 hat k (b) vec a+ vec b=3 hat i+2 vec k vec b=2 hat i- hat j+ hat k (d) vec b= hat i-2 hat j-3 hat k

vec a=(hat i+hat j+hat k),vec a*vec b=1 and vec a xxvec b=hat j-hat k, then hat b is hat i-hat j+hat k b.2hat j-hat k c.hat i d.2hat i

If vec a= hat i+ hat j+ hat k , vec c= hat j- hat k , vec adot vec b=3 and vec ax vec b= vec c , then vec b is equal to

Given vec a=x hat i+y hat j+2 hat k , vec b= hat i- hat j+ hat k , vec c= hat i+2 hat j ; vec a_|_ vec b , vec adot vec c=4. Then [ vec a vec b vec c]^2=| vec a| b. [ vec a vec b vec c]^=| vec a| c. [ vec a vec b vec c]^=0 d. [ vec a vec b vec c]^=| vec a|^2

Let vec a=3 hat i+2 hat j+hat k,vec b=2 hat i-hat j+3 hat k and vec c be a vector such that (vec a+vec b)timesvec c=2(vec a timesvec b)+24 hat j-6 hat k and (vec a-vec b+hat i)*vec c=-3 .Then |vec c|^(2) is equal to:

Let vec a=5hat i-hat j+7hat k and vec b=hat i-hat j+lambdahat k Find lambda such that vec a+vec b is orthogonal to vec a-vec b

Let vec a=5hat i-hat j+7hat k and vec b=hat i-hat j+lambdahat k Find lambda such that vec a+vec b is orthogonal to vec a-vec b.

Let vec A=hat i-3hat j+4hat k,vec B=6hat i+4hat j-8hat k,vec C=5hat i+2hat j+5hat k and vector vec R satisfies vec R timesvec B=vec C timesvec B,vec R*vec A=0 ,then the value of (|vec B|)/(|vec R-vec C|) is

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. Let f:R rarr R be a function defined by f(x)=log(m) {sqrt(2)(sin x-cos...

    Text Solution

    |

  2. Let the function f(x)=2x^(3)+(2p-7)x^(2)+3(2p-9)x-6 have a maxima for ...

    Text Solution

    |

  3. Let vec a=-hat i-hat j+hat k,vec a*vec b=1 and vec a timesvec b=hat i-...

    Text Solution

    |

  4. Let y=y(t) be a solution of the differential equation (dy)/(dt)+alpha ...

    Text Solution

    |

  5. Let N be the sum of the numbers appeared when two fair dice are rolled...

    Text Solution

    |

  6. A triangle is formed by X -axis, Y -axis and the line 3x+4y=60.Then th...

    Text Solution

    |

  7. If int((1)/(3))^(3)|log(e)x|dx=(m)/(n)log(e)(n^2/e), where m and n are...

    Text Solution

    |

  8. Suppose Anil's mother wants to gave 5 whole fruits to Anil from a bask...

    Text Solution

    |

  9. Point P(-3,2),Q(9,10) and R(alpha,4) lie on a circle C with PR as its ...

    Text Solution

    |

  10. If m and n respectively are the numbers of positive and negative value...

    Text Solution

    |

  11. The remainder when (2023)^(2023) is divided by 35 is

    Text Solution

    |

  12. 25% of the population are smokers.A smoker has 27 times more chances t...

    Text Solution

    |

  13. If the shortest distance between the line joining the points (1,2,3) a...

    Text Solution

    |

  14. Let alpha in R and let alpha,beta be the roots of the equation x^(2)+6...

    Text Solution

    |

  15. For the two positive numbers a,b,if a,b and (1)/(18) are in a geometri...

    Text Solution

    |

  16. If the coefficient of x^(15) in expansion of (ax^(3)+(1)/(bx^(1/3)))^(...

    Text Solution

    |

  17. Let the solution curve y=y(x) of the differential equation (dy)/(dx)-(...

    Text Solution

    |

  18. The number of points on the curve y=54x^(5)-135x^(4)-70x^(3)+180x^(2)+...

    Text Solution

    |

  19. If tan15^(@)+(1)/(tan75^(@))+(1)/(tan105^(@))+tan195^(@)=2a,then the v...

    Text Solution

    |

  20. If [t] denotes the greatest integer let,then the value of (3(e-1))/(e)...

    Text Solution

    |