Home
Class 12
MATHS
If int((1)/(3))^(3)|log(e)x|dx=(m)/(n)lo...

If `int_((1)/(3))^(3)|log_(e)x|dx=(m)/(n)log_(e)(n^2/e),` where `m` and `n` are co-prime natural numbers ,then `m^(2)+n^(2)-5` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{\frac{1}{3}}^{3} |\log_e x| \, dx \) and express it in the form \( \frac{m}{n} \log_e \left( \frac{n^2}{e} \right) \), where \( m \) and \( n \) are co-prime natural numbers, we can follow these steps: ### Step 1: Split the Integral The absolute value function \( |\log_e x| \) changes its behavior at \( x = 1 \). Therefore, we can split the integral at this point: \[ \int_{\frac{1}{3}}^{3} |\log_e x| \, dx = \int_{\frac{1}{3}}^{1} -\log_e x \, dx + \int_{1}^{3} \log_e x \, dx \] ### Step 2: Evaluate the First Integral For the first integral \( \int_{\frac{1}{3}}^{1} -\log_e x \, dx \): Using integration by parts, let: - \( u = \log_e x \) ⇒ \( du = \frac{1}{x} \, dx \) - \( dv = dx \) ⇒ \( v = x \) Then, the integration by parts formula \( \int u \, dv = uv - \int v \, du \) gives us: \[ \int -\log_e x \, dx = -x \log_e x + \int x \cdot \frac{1}{x} \, dx = -x \log_e x + x \] Now, we evaluate from \( \frac{1}{3} \) to \( 1 \): \[ \left[-x \log_e x + x\right]_{\frac{1}{3}}^{1} = \left[-1 \cdot \log_e 1 + 1\right] - \left[-\frac{1}{3} \log_e \frac{1}{3} + \frac{1}{3}\right] \] Since \( \log_e 1 = 0 \): \[ = 1 - \left[-\frac{1}{3} \cdot (-\log_e 3) + \frac{1}{3}\right] = 1 - \left[\frac{1}{3} \log_e 3 + \frac{1}{3}\right] \] \[ = 1 - \frac{1}{3} \log_e 3 - \frac{1}{3} = \frac{2}{3} - \frac{1}{3} \log_e 3 \] ### Step 3: Evaluate the Second Integral Now consider the second integral \( \int_{1}^{3} \log_e x \, dx \): Using integration by parts again: \[ \int \log_e x \, dx = x \log_e x - x \] Evaluating from \( 1 \) to \( 3 \): \[ \left[x \log_e x - x\right]_{1}^{3} = \left[3 \log_e 3 - 3\right] - \left[1 \cdot \log_e 1 - 1\right] \] Since \( \log_e 1 = 0 \): \[ = (3 \log_e 3 - 3) - (0 - 1) = 3 \log_e 3 - 3 + 1 = 3 \log_e 3 - 2 \] ### Step 4: Combine the Results Now, we combine both integrals: \[ \int_{\frac{1}{3}}^{3} |\log_e x| \, dx = \left(\frac{2}{3} - \frac{1}{3} \log_e 3\right) + \left(3 \log_e 3 - 2\right) \] Combining these: \[ = \frac{2}{3} - \frac{1}{3} \log_e 3 + 3 \log_e 3 - 2 = \frac{2}{3} - 2 + \left(3 - \frac{1}{3}\right) \log_e 3 \] \[ = \frac{2}{3} - \frac{6}{3} + \frac{8}{3} \log_e 3 = -\frac{4}{3} + \frac{8}{3} \log_e 3 \] ### Step 5: Express in Required Form We want to express this in the form \( \frac{m}{n} \log_e \left( \frac{n^2}{e} \right) \): \[ -\frac{4}{3} + \frac{8}{3} \log_e 3 = \frac{8}{3} \log_e 3 - \frac{4}{3} \] This can be rewritten as: \[ \frac{8}{3} \left( \log_e 3 - \frac{1}{2} \right) = \frac{8}{3} \log_e \left( \frac{3^2}{e} \right) \] From this, we can identify \( m = 8 \) and \( n = 3 \). ### Step 6: Calculate \( m^2 + n^2 - 5 \) Now we calculate \( m^2 + n^2 - 5 \): \[ m^2 + n^2 - 5 = 8^2 + 3^2 - 5 = 64 + 9 - 5 = 68 \] Thus, the final answer is: \[ \boxed{68} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(3)|(2-x)log_(e )x|dx is equal to:

int_(1)^(e)(x^(4)ln x+2)/(x^(3)ln x+x)dx=(e^(2)+a)/(b)-ln(e^(2)+1) where a and b are positive integers then (a)/(b)=

1+((log_(e)n)^(2))/(2!)+((log_(e)n)^(4))/(4!)+...=

Evaluate lim_(ntooo) (1)/(n^(2(log_(e)n-log_(e)(n-1)))+n) .

int_(0)^(16)(log_(e )x^(2))/(log_(e )x^(2)+log_(e )(x^(2)-44x+484))dx is equal to

If m, n in N , then l_(m n) = int_(0)^(1) x^(m) (1-x)^(n) dx is equal to

m;n;a>0;a!=1;log_(a)((m)/(n))=log_(a)m-log_(a)n

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. Let N be the sum of the numbers appeared when two fair dice are rolled...

    Text Solution

    |

  2. A triangle is formed by X -axis, Y -axis and the line 3x+4y=60.Then th...

    Text Solution

    |

  3. If int((1)/(3))^(3)|log(e)x|dx=(m)/(n)log(e)(n^2/e), where m and n are...

    Text Solution

    |

  4. Suppose Anil's mother wants to gave 5 whole fruits to Anil from a bask...

    Text Solution

    |

  5. Point P(-3,2),Q(9,10) and R(alpha,4) lie on a circle C with PR as its ...

    Text Solution

    |

  6. If m and n respectively are the numbers of positive and negative value...

    Text Solution

    |

  7. The remainder when (2023)^(2023) is divided by 35 is

    Text Solution

    |

  8. 25% of the population are smokers.A smoker has 27 times more chances t...

    Text Solution

    |

  9. If the shortest distance between the line joining the points (1,2,3) a...

    Text Solution

    |

  10. Let alpha in R and let alpha,beta be the roots of the equation x^(2)+6...

    Text Solution

    |

  11. For the two positive numbers a,b,if a,b and (1)/(18) are in a geometri...

    Text Solution

    |

  12. If the coefficient of x^(15) in expansion of (ax^(3)+(1)/(bx^(1/3)))^(...

    Text Solution

    |

  13. Let the solution curve y=y(x) of the differential equation (dy)/(dx)-(...

    Text Solution

    |

  14. The number of points on the curve y=54x^(5)-135x^(4)-70x^(3)+180x^(2)+...

    Text Solution

    |

  15. If tan15^(@)+(1)/(tan75^(@))+(1)/(tan105^(@))+tan195^(@)=2a,then the v...

    Text Solution

    |

  16. If [t] denotes the greatest integer let,then the value of (3(e-1))/(e)...

    Text Solution

    |

  17. Let y=x+2,4y=3x+6 and 3y=4x+1 be three tangent lines to the circle (x-...

    Text Solution

    |

  18. If the solution of the equation log(cosx) cotx+4log(sinx) tanx=1, x in...

    Text Solution

    |

  19. If an unbiased die,marked with -2,-1,0,1,2,3 on its faces,is thrown fi...

    Text Solution

    |

  20. The coefficient of x^(301 in the expansion of (1+x)^(500)+x(1+x)^(499)...

    Text Solution

    |