Home
Class 12
MATHS
If the solution of the equation log(cosx...

If the solution of the equation `log_(cosx) cotx+4log_(sinx) tanx=1, x in (0,pi/2)`,is `sin^(-1)((alpha+sqrt(beta))/(2))`,where `alpha,beta` are integers,then `alpha+beta` is equal to :

A

`6`

B

`4`

C

`5`

D

`3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{\cos x} \cot x + 4 \log_{\sin x} \tan x = 1 \) for \( x \in (0, \frac{\pi}{2}) \), we will follow these steps: ### Step 1: Rewrite the logarithmic expressions We start by rewriting the logarithmic expressions in terms of natural logarithms: \[ \log_{\cos x} \cot x = \frac{\log \cot x}{\log \cos x} \quad \text{and} \quad \log_{\sin x} \tan x = \frac{\log \tan x}{\log \sin x} \] Thus, the equation becomes: \[ \frac{\log \cot x}{\log \cos x} + 4 \cdot \frac{\log \tan x}{\log \sin x} = 1 \] ### Step 2: Express cotangent and tangent Recall that: \[ \cot x = \frac{\cos x}{\sin x} \quad \text{and} \quad \tan x = \frac{\sin x}{\cos x} \] So we can rewrite the logarithms: \[ \log \cot x = \log \cos x - \log \sin x \quad \text{and} \quad \log \tan x = \log \sin x - \log \cos x \] ### Step 3: Substitute back into the equation Substituting these into our equation gives: \[ \frac{\log \cos x - \log \sin x}{\log \cos x} + 4 \cdot \frac{\log \sin x - \log \cos x}{\log \sin x} = 1 \] ### Step 4: Simplify the equation This simplifies to: \[ 1 - \frac{\log \sin x}{\log \cos x} + 4 \left(1 - \frac{\log \cos x}{\log \sin x}\right) = 1 \] Rearranging gives: \[ -\frac{\log \sin x}{\log \cos x} + 4 - 4\frac{\log \cos x}{\log \sin x} = 0 \] ### Step 5: Let \( a = \log \sin x \) and \( b = \log \cos x \) Let \( a = \log \sin x \) and \( b = \log \cos x \). The equation becomes: \[ -\frac{a}{b} + 4 - 4\frac{b}{a} = 0 \] Multiplying through by \( ab \) gives: \[ -a^2 + 4ab - 4b^2 = 0 \] ### Step 6: Rearranging the quadratic equation Rearranging gives: \[ a^2 - 4ab + 4b^2 = 0 \] This can be factored as: \[ (a - 2b)^2 = 0 \] ### Step 7: Solve for \( a \) Thus, we have: \[ a - 2b = 0 \implies a = 2b \] ### Step 8: Substitute back to find \( x \) Substituting back gives: \[ \log \sin x = 2 \log \cos x \implies \sin x = \cos^2 x \] ### Step 9: Use the identity \( \sin x = 1 - \cos^2 x \) Using the identity \( \sin^2 x + \cos^2 x = 1 \): \[ \sin x = 1 - \sin^2 x \implies \sin^2 x + \sin x - 1 = 0 \] ### Step 10: Solve the quadratic equation Using the quadratic formula: \[ \sin x = \frac{-1 \pm \sqrt{1 + 4}}{2} = \frac{-1 \pm \sqrt{5}}{2} \] Since \( x \in (0, \frac{\pi}{2}) \), we take the positive root: \[ \sin x = \frac{-1 + \sqrt{5}}{2} \] ### Step 11: Express in the required form The solution is of the form \( \sin^{-1}\left(\frac{\alpha + \sqrt{\beta}}{2}\right) \), where \( \alpha = -1 \) and \( \beta = 5 \). ### Step 12: Calculate \( \alpha + \beta \) Thus, we find: \[ \alpha + \beta = -1 + 5 = 4 \] ### Final Answer The final answer is \( \boxed{4} \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

If sin alpha=(3)/(sqrt(73)),cos beta=(11)/(sqrt(146)) where alpha,beta in[0,(pi)/(2)] then (alpha+beta) is equal to-

If the solution of the equation log_(x)(125x)*log_(25)^(2)x=1are alpha and beta(alpha

If sin(alpha+beta)=1,sin(alpha-beta)=(1)/(2) where alpha,beta in[0,(pi)/(2)], then tan(alpha+2 beta)tan(2 alpha+beta) is equal to

If sin (alpha - beta) =1/2 and cos (alpha + beta) =1/2, where alpha and beta are positive acute angles, then alpha and beta are

If alpha and beta are solutions of the equation 4log_(3)^(2)x-4log_(3)x^(2)+1=0 then the value of |(sqrt(alpha beta)+1)/(sqrt(alpha beta)-1)| is

If cos alpha+cos beta=0=sin alpha+sin beta, then cos2 alpha+cos2 beta is equal to

If int_(-pi/2)^(pi/2) frac {8 sqrt 2 cos x dx}{(1 e^(sin x)) (1 sin^4 x)} = alpha pi beta log_e(3 2 sqrt 2) , where alpha , beta are integers, then alpha^2 beta^2 equals ___________.

If lim_(x rarr0)(e^(alpha x^(2))-cos sqrt(beta)x)/(x^(2))=(1)/(2) [ where alpha in R-{0},beta in(0,oo)], then 2 alpha+beta equals

Show that the solution of the equation [(x, y),(z, t)]^(2)=O is [(x,y),(z,t)]=[(pm sqrt(alpha beta),-beta),(alpha,pm sqrt(alpha beta))] where alpha, beta are arbitrary.

If alpha and beta are solutions of the equation 5^(log_(5)2)+x^(log_(5)x)=1250; then log_(beta)alpha equals :

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. If [t] denotes the greatest integer let,then the value of (3(e-1))/(e)...

    Text Solution

    |

  2. Let y=x+2,4y=3x+6 and 3y=4x+1 be three tangent lines to the circle (x-...

    Text Solution

    |

  3. If the solution of the equation log(cosx) cotx+4log(sinx) tanx=1, x in...

    Text Solution

    |

  4. If an unbiased die,marked with -2,-1,0,1,2,3 on its faces,is thrown fi...

    Text Solution

    |

  5. The coefficient of x^(301 in the expansion of (1+x)^(500)+x(1+x)^(499)...

    Text Solution

    |

  6. If a(n)=(-2)/(4n^(2)-16n+15),then a(1)+a(2)+......+a(25) is equal to :

    Text Solution

    |

  7. The minimum number of elements that must be added to the relation R={(...

    Text Solution

    |

  8. If P(h,k) be a point on the parabola x=4y^(2),which is nearest to the ...

    Text Solution

    |

  9. Let the system of linear equations x+y+kz=2 2x+3y-z=1 3x+4y+2z=k ...

    Text Solution

    |

  10. The line l(1) passes through the point (2,6,2) and is perpendicular to...

    Text Solution

    |

  11. If vec a,vec b,vec c are three non-zero vectors and hatn is a unit vec...

    Text Solution

    |

  12. Among the statements : (S1) ((p vv q)rArr r)hArr(p rarr r) (S2) (p...

    Text Solution

    |

  13. Let a unit vector vec OP make angles alpha,beta,gamma with the positiv...

    Text Solution

    |

  14. A straight line cuts off the intercepts OA=a and OB=b on the positive ...

    Text Solution

    |

  15. Let A=([m,n],[p,q]),d=|A| !=0 and |A-d(AdjA)|=0.Then

    Text Solution

    |

  16. Suppose f:R rarr(0,oo) be a differentiable function such that 5f(x+y)=...

    Text Solution

    |

  17. lim(x rarr 0)(48)/(x^(4))int(0)^(x)(t^(3))/(t^(6)+1)dt is equal to

    Text Solution

    |

  18. Let alpha be the area of the larger region bounded by the curve y^(2)=...

    Text Solution

    |

  19. Let sum(n=0)^(oo)(n^3(2n)!+(2n-1)n!)/(n!.(2n)!)=ae+b/e+c,where a,b,c i...

    Text Solution

    |

  20. Number of 4 -digit numbers (the repetition of digits is allowed) which...

    Text Solution

    |