Home
Class 12
MATHS
If vec a,vec b,vec c are three non-zero ...

If `vec a,vec b,vec c` are three non-zero vectors and `hatn` is a unit vector perpendicular to `vec c` such that `vec a=alpha vec b-hatn,(alpha!=0)` and `vec b*vec c=12`,then `|vec c times(vec a times vec b)|` is equal to :

A

`9`

B

`15`

C

`6`

D

`12`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(|\vec{c} \times (\vec{a} \times \vec{b})|\) given the relationships between the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). ### Step 1: Understand the given relationships We have: - \(\vec{a} = \alpha \vec{b} - \hat{n}\) where \(\hat{n}\) is a unit vector perpendicular to \(\vec{c}\). - \(\vec{b} \cdot \vec{c} = 12\). ### Step 2: Find \(\hat{n} \cdot \vec{c}\) Since \(\hat{n}\) is perpendicular to \(\vec{c}\), we have: \[ \hat{n} \cdot \vec{c} = 0. \] ### Step 3: Calculate \(\vec{a} \cdot \vec{c}\) Using the expression for \(\vec{a}\): \[ \vec{a} \cdot \vec{c} = (\alpha \vec{b} - \hat{n}) \cdot \vec{c} = \alpha (\vec{b} \cdot \vec{c}) - (\hat{n} \cdot \vec{c}). \] Substituting the known values: \[ \vec{a} \cdot \vec{c} = \alpha (12) - 0 = 12\alpha. \] ### Step 4: Use the vector triple product identity We need to compute \(|\vec{c} \times (\vec{a} \times \vec{b})|\). Using the vector triple product identity: \[ \vec{c} \times (\vec{a} \times \vec{b}) = (\vec{c} \cdot \vec{b}) \vec{a} - (\vec{c} \cdot \vec{a}) \vec{b}. \] Now substituting the values we have: \[ |\vec{c} \times (\vec{a} \times \vec{b})| = |(\vec{c} \cdot \vec{b}) \vec{a} - (\vec{c} \cdot \vec{a}) \vec{b}|. \] Substituting \(\vec{c} \cdot \vec{b} = 12\) and \(\vec{c} \cdot \vec{a} = 12\alpha\): \[ |\vec{c} \times (\vec{a} \times \vec{b})| = |12 \vec{a} - 12\alpha \vec{b}|. \] ### Step 5: Factor out the common term Factoring out 12: \[ |\vec{c} \times (\vec{a} \times \vec{b})| = 12 |\vec{a} - \alpha \vec{b}|. \] ### Step 6: Substitute \(\vec{a}\) We know \(\vec{a} = \alpha \vec{b} - \hat{n}\), so: \[ |\vec{a} - \alpha \vec{b}| = |(\alpha \vec{b} - \hat{n}) - \alpha \vec{b}| = |-\hat{n}| = 1. \] ### Step 7: Final calculation Thus, \[ |\vec{c} \times (\vec{a} \times \vec{b})| = 12 \cdot 1 = 12. \] ### Conclusion The value of \(|\vec{c} \times (\vec{a} \times \vec{b})|\) is \(\boxed{12}\).
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

Let vec a,vec b,vec c are three non-zero vectors and vec b is neither perpendicular to vec a nor to vec c and " (vec a timesvec b)timesvec c=vec a times(vec b timesvec c) .Then the angle between vec a and vec c is:

Let vec a, vec b, vec c be three non-zero vectors such that [vec with bvec c] = | vec a || vec b || vec c | then

If vec a,vec b and vec c are three non-zero vectors,prove that [vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]

Let vec a,vec b,vec c be three non-zero vectors such that vec c is a unit vector perpendicular to both vec a and vec b. If the between vec a and vec b is pi/6 prove that [vec avec bvec c]^(2)=(1)/(4)|vec a|^(2)|vec b|^(2)

Solve the following equation for the vector vec p; vec p xx vec a+(vec p. vec b)vec c=vec b xx vec c where vec a ,vec b,vec c are non zero non coplanar vectors and vec a is neither perpendicular to vec b non to vec c hence show that (vec p xx vec a+([vec a vec b vec c])/(vec a*vec c) vec c) is perpendicular vec b-vec c.

vec a, vec b, vec c, dare any four vectors then (vec a xxvec b) xx (vec c xxvec d) is a vector Perpendicular to vec a, vec b, vec c, vec d

Let vec a be a unit vector perpendicular to unit vector vec b and vec c and if the angle between vec b and vec c be alpha, then vec b xxvec c is

Let vec a be a unit vector perpendicular to unit vector vec b and vec c and if the angle between vec b and vec c be alpha, then vec b xxvec c is

Let vec a be a unit vector perpendicular to unit vector vec b and vec c and if the angle between vec b and vec c be alpha, then vec b xxvec c is

If vec a, vec b and vec c are non-coplanar vector and vec a times vec c is perpendicular to vec a times(vec b times vec c) ,then the value of [vec a times(vec b times vec c)]times vec c is equal to :

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. Let the system of linear equations x+y+kz=2 2x+3y-z=1 3x+4y+2z=k ...

    Text Solution

    |

  2. The line l(1) passes through the point (2,6,2) and is perpendicular to...

    Text Solution

    |

  3. If vec a,vec b,vec c are three non-zero vectors and hatn is a unit vec...

    Text Solution

    |

  4. Among the statements : (S1) ((p vv q)rArr r)hArr(p rarr r) (S2) (p...

    Text Solution

    |

  5. Let a unit vector vec OP make angles alpha,beta,gamma with the positiv...

    Text Solution

    |

  6. A straight line cuts off the intercepts OA=a and OB=b on the positive ...

    Text Solution

    |

  7. Let A=([m,n],[p,q]),d=|A| !=0 and |A-d(AdjA)|=0.Then

    Text Solution

    |

  8. Suppose f:R rarr(0,oo) be a differentiable function such that 5f(x+y)=...

    Text Solution

    |

  9. lim(x rarr 0)(48)/(x^(4))int(0)^(x)(t^(3))/(t^(6)+1)dt is equal to

    Text Solution

    |

  10. Let alpha be the area of the larger region bounded by the curve y^(2)=...

    Text Solution

    |

  11. Let sum(n=0)^(oo)(n^3(2n)!+(2n-1)n!)/(n!.(2n)!)=ae+b/e+c,where a,b,c i...

    Text Solution

    |

  12. Number of 4 -digit numbers (the repetition of digits is allowed) which...

    Text Solution

    |

  13. Let S={1,2,3,4,5,6}.Then the number of one-one functions f:S rarr P(S)...

    Text Solution

    |

  14. If the equation of the plane passing through the point (1,1,2) and per...

    Text Solution

    |

  15. The mean and variance of 7 observations are 8 and 16 respectively.If o...

    Text Solution

    |

  16. If lambda(1) lt lambda(2) are two values of lambda such that the angle...

    Text Solution

    |

  17. Let z=1+i and z(1)=(1+i(barz))/((barz)(1-z)+(1)/(z)).Then (12)/(pi)arg...

    Text Solution

    |

  18. Let f^(1)(x)=(3x+2)/(2x+3),x in R-{(-3)/(2)} For nge2, define f^(n(x...

    Text Solution

    |

  19. Let x=(8sqrt(3)+13)^(13) and y=(7sqrt(2)+9)^(9).If [t] denotes the gre...

    Text Solution

    |

  20. A vector vec v in the first octant is inclined to the x -axis at 60^(@...

    Text Solution

    |