Home
Class 12
MATHS
Let f^(1)(x)=(3x+2)/(2x+3),x in R-{(-3)/...

Let `f^(1)(x)=(3x+2)/(2x+3),x in R-{(-3)/(2)}`
For `nge2,` define `f^(n(x))=f^(1)of^(n-1)(x)`.
If `f^(5)(x)=(ax+b)/(bx+a),gcd(a,b)=1`,then `a+b` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f^5(x) \) based on the function \( f^1(x) = \frac{3x + 2}{2x + 3} \) and then express it in the form \( \frac{ax + b}{bx + a} \) where \( \gcd(a, b) = 1 \). Finally, we will compute \( a + b \). ### Step-by-Step Solution: 1. **Define the Function**: We start with the function given: \[ f^1(x) = \frac{3x + 2}{2x + 3} \] 2. **Calculate \( f^2(x) \)**: To find \( f^2(x) \), we need to compute \( f^1(f^1(x)) \): \[ f^2(x) = f^1(f^1(x)) = f^1\left(\frac{3x + 2}{2x + 3}\right) \] Substitute \( x \) in \( f^1(x) \): \[ f^1\left(\frac{3x + 2}{2x + 3}\right) = \frac{3\left(\frac{3x + 2}{2x + 3}\right) + 2}{2\left(\frac{3x + 2}{2x + 3}\right) + 3} \] Simplifying the numerator: \[ = \frac{\frac{9x + 6 + 4x + 6}{2x + 3}}{\frac{6x + 4 + 6x + 9}{2x + 3}} = \frac{(9x + 4x + 12)}{(6x + 6x + 13)} = \frac{13x + 12}{12x + 13} \] 3. **Calculate \( f^3(x) \)**: Now, we find \( f^3(x) = f^1(f^2(x)) \): \[ f^3(x) = f^1\left(\frac{13x + 12}{12x + 13}\right) \] Substitute into \( f^1 \): \[ = \frac{3\left(\frac{13x + 12}{12x + 13}\right) + 2}{2\left(\frac{13x + 12}{12x + 13}\right) + 3} \] Simplifying: \[ = \frac{\frac{39x + 36 + 24x + 26}{12x + 13}}{\frac{26x + 24 + 36x + 39}{12x + 13}} = \frac{(39x + 24x + 62)}{(26x + 36x + 63)} = \frac{63x + 62}{62x + 63} \] 4. **Calculate \( f^4(x) \)**: Continuing, we find \( f^4(x) = f^1(f^3(x)) \): \[ f^4(x) = f^1\left(\frac{63x + 62}{62x + 63}\right) \] Substitute: \[ = \frac{3\left(\frac{63x + 62}{62x + 63}\right) + 2}{2\left(\frac{63x + 62}{62x + 63}\right) + 3} \] Simplifying gives: \[ = \frac{(189x + 186 + 124)}{(126x + 124 + 189)} = \frac{189x + 186 + 124}{126x + 189 + 124} = \frac{313x + 310}{315x + 313} \] 5. **Calculate \( f^5(x) \)**: Finally, we find \( f^5(x) = f^1(f^4(x)) \): \[ f^5(x) = f^1\left(\frac{313x + 310}{315x + 313}\right) \] Substitute: \[ = \frac{3\left(\frac{313x + 310}{315x + 313}\right) + 2}{2\left(\frac{313x + 310}{315x + 313}\right) + 3} \] Simplifying gives: \[ = \frac{(939x + 930 + 620)}{(626x + 620 + 939)} = \frac{939x + 930 + 620}{626x + 939 + 620} = \frac{1559x + 1550}{1565x + 1559} \] 6. **Identify \( a \) and \( b \)**: From \( f^5(x) = \frac{1559x + 1550}{1565x + 1559} \), we can identify: - \( a = 1559 \) - \( b = 1550 \) 7. **Calculate \( a + b \)**: Now, we compute: \[ a + b = 1559 + 1550 = 3109 \] ### Final Answer: Thus, the value of \( a + b \) is \( \boxed{3109} \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

If f(x)=cos^(-1)(4x^3-3x)and lim_(xto1//2+)f'(x)=a and lim_(xto1//2-)f'(x)=b then a + b+ 3 is equal to

Let f(x)=(x+1)/(x-1) for all xne1 . Let f^(1)(x)=f(x),f^(2)(x)=f(f(x)) and generally f^(n)(x)=f(f^(n-1)(x)) " for n"gt1 Let P=f^(1)(2)f^(2)(3)f^(3)(4)f^(4)(5) Which of the following is a multiple of P- (A) 125 (B) 375 (C) 250 (D) 147

If f((ax+b)/(x-a))=x, then f^(-1)(x)= (a) x (b) (bx+a)/(x-b)( c) f(x)

Let f(x)=ax+b with a,b in R , f_(1)(x)=f(x) and f_(n+1)(x)=f(f_(n)(x)),n in N , If f_(7)(x)=128x+381 , Then a+b is

Let the function f be defined by f(x)=((2x+1)/(1-3x)) then f^(-1)(x) is

For x in R-{0,1}, " let " f_(1)(x)=(1)/(x), f_(2)(x)=1-x and f_(3)(x)=(1)/(1-x) be three given functions. If a function, J(x) satisfies (f_(2) @J@f_(1))(x)=f_(3)(x), " then " J(x) is equal to

Let A={x in R:x<=1} and f:A rarr A be defined as f(x)=x(2-x). Then ,f^(-1)(x) is

If f:A rarr B defined as f(x)=x^(2)+2x+(1)/(1+(x+1)^(2)) is onto function,then set B is equal to

Let A={x:(-2)/(5)<=x<=(pi-2)/(5)} and B={y:-1<=y<=1} and f:A rarr B is defined by f(x)=cos(5x+2) . Then f^(-1)(x) is

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. If lambda(1) lt lambda(2) are two values of lambda such that the angle...

    Text Solution

    |

  2. Let z=1+i and z(1)=(1+i(barz))/((barz)(1-z)+(1)/(z)).Then (12)/(pi)arg...

    Text Solution

    |

  3. Let f^(1)(x)=(3x+2)/(2x+3),x in R-{(-3)/(2)} For nge2, define f^(n(x...

    Text Solution

    |

  4. Let x=(8sqrt(3)+13)^(13) and y=(7sqrt(2)+9)^(9).If [t] denotes the gre...

    Text Solution

    |

  5. A vector vec v in the first octant is inclined to the x -axis at 60^(@...

    Text Solution

    |

  6. If P is a 3times3 real matrix such that P^(T)=aP+(a-1)I, Where a>I,the...

    Text Solution

    |

  7. .Let q be the maximum integral value of p in [0,10] for which the root...

    Text Solution

    |

  8. .Let f,g and h be the real valued function defined on R as f(x)={(x/ab...

    Text Solution

    |

  9. .Let a(1)=1,a(2),a(3),a(4),.... be consecutive natural number,then tan...

    Text Solution

    |

  10. .If a plane passes through the point (-1,k,0),(2,k,-1),(1,1,2) and is ...

    Text Solution

    |

  11. If the function f(x)=(x^(3))/(3)+2bx+(ax^(2))/(2) and g(x)=(x^(3))/(3)...

    Text Solution

    |

  12. The parabolas : ax^(2)+2bx+cy=0 and dx^(2)+2ex+fy=0 intersect on the l...

    Text Solution

    |

  13. Let vec a and vec b be two vectors,Let |vec a|=1,|vec b|=4 and vec a*v...

    Text Solution

    |

  14. lim(n rarr oo)3/n[4+(2+(1)/(n))^(2)+(2+(2)/(n))^(2)+....+(3-(1)/(n))^(...

    Text Solution

    |

  15. Let a,b,c>1,a^(3),b^(3) and c^(3) be in A.P.and log(a)b,log(c)a and lo...

    Text Solution

    |

  16. The range of the function f(x)=sqrt(3-x)+sqrt(2+x) is :

    Text Solution

    |

  17. Let S be the set of all value of a(1) for which the mean deviation abo...

    Text Solution

    |

  18. Let A be a point on the x -axis.Common tangents are drawn from A to th...

    Text Solution

    |

  19. .Consider the following statements: P: I have fever Q: I will not t...

    Text Solution

    |

  20. The number of ways of selecting two numbers a and b,a in {2,4,6,...,10...

    Text Solution

    |