Home
Class 12
MATHS
.Let a(1)=1,a(2),a(3),a(4),.... be conse...

.Let `a_(1)=1,a_(2),a_(3),a_(4),....` be consecutive natural number,then `tan^(-1)((1)/(1+a_(1)a_(2)))+tan^(-1)((1)/(1+a_(2)a_(3)))+ . . . +tan^(-1)((1)/(1+a_(2021)a_(2022)))` is equal to

A

`cot^(-1)(2022)-(pi)/(4)`

B

`(pi)/(4)-cot^(-1)(2022)`

C

`tan^(-1)(2022)-(pi)/(4)`

D

`(pi)/(4)-tan^(-1)(2022)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum: \[ S = \tan^{-1}\left(\frac{1}{1 + a_1 a_2}\right) + \tan^{-1}\left(\frac{1}{1 + a_2 a_3}\right) + \ldots + \tan^{-1}\left(\frac{1}{1 + a_{2021} a_{2022}}\right) \] where \( a_n \) are consecutive natural numbers starting from \( a_1 = 1 \). ### Step 1: Identify the terms The terms can be expressed as: - \( a_1 = 1 \) - \( a_2 = 2 \) - \( a_3 = 3 \) - ... - \( a_{2022} = 2022 \) ### Step 2: Rewrite the terms using the formula Using the identity \( \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x+y}{1-xy}\right) \) when \( xy < 1 \), we can rewrite each term: \[ \tan^{-1}\left(\frac{1}{1 + a_n a_{n+1}}\right) = \tan^{-1}(a_{n+1} - a_n) - \tan^{-1}(a_n) \] ### Step 3: Apply the identity Thus, we can rewrite the sum \( S \): \[ S = \left( \tan^{-1}(2 - 1) - \tan^{-1}(1) \right) + \left( \tan^{-1}(3 - 2) - \tan^{-1}(2) \right) + \ldots + \left( \tan^{-1}(2022 - 2021) - \tan^{-1}(2021) \right) \] ### Step 4: Simplify the expression Notice that this is a telescoping series: \[ S = \tan^{-1}(2022 - 1) - \tan^{-1}(1) = \tan^{-1}(2021) - \tan^{-1}(1) \] ### Step 5: Evaluate the final expression We know that \( \tan^{-1}(1) = \frac{\pi}{4} \). Thus, we have: \[ S = \tan^{-1}(2021) - \frac{\pi}{4} \] ### Step 6: Final answer The final answer for the sum is: \[ S = \tan^{-1}(2021) - \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

If a_(1),a_(2),a_(3),….a_(n) is a.p with common difference d then tan{tan^(-1)((d)/(1+a_(1)a_(2)))+tan^(-1)((d)/(1+a_(2)a_(3))) +..+ tan^(-1)((d)/(1+a_(n-1)a_(n)))} is equal to

If a_(1), a_(2), a_(3),...., a_(n) is an A.P. with common difference d, then prove that tan[tan^(-1) ((d)/(1 + a_(1) a_(2))) + tan^(-1) ((d)/(1 + a_(2) a_(3))) + ...+ tan^(-1) ((d)/(1 + a_( - 1)a_(n)))] = ((n -1)d)/(1 + a_(1) a_(n))

If a_(1),a_(2),a_(3),a_(n) is an A.P.with common difference d, then prove that tan[tan^(-1)((d)/(1+a_(1)a_(2)))+tan^(-1)((d)/(1+a_(2)a_(3)))+tan^(-1)((d)/(1+a_(n-1)a_(n)))]=((n-1)d)/(1+a_(1)a_(n))

If a_(1), a_(2), a_(3) are in arithmetic progression and d is the common diference, then tan^(-1)((d)/(1+a_(1)a_(2)))+tan^(-1)((d)/(1+a_(2)a_(3)))=

Let a_(1),a_(2),a_(3),...a_(n) be an AP.Prove that: (1)/(a_(1)a_(n))+(1)/(a_(2)a_(n-1))+(1)/(a_(3)a_(n-2))+......+(1)/(a_(n)a_(1))=

If a_(1),a_(2),a_(3),,a_(n) are an A.P.of non-zero terms, prove that _(1)(1)/(a_(1)a_(2))+(1)/(a_(2)a_(3))++(1)/(a_(n-1)a_(n))=(n-1)/(a_(1)a_(n))

Let a_(1),a_(2),a_(3), . . .,a_(n) be an A.P. Statement -1 : (1)/(a_(1)a_(n))+(1)/(a_(2)a_(n-1))+(1)/(a_(3)a_(n-1))+ . . .. +(1)/(a_(n)a_(1)) =(2)/(a_(1)+a_(n))((1)/(a_(1))+(1)/(a_(2))+ . . .. +(1)/(a_(n))) Statement -2: a_(r)+a_(n-r+1)=a_(1)+a_(n)" for "1lerlen

If a_(n+1)=(1)/(1-a_(n))" for " n ge 1 and a_(3)=a_(1)," then "(a_(2022))^(2022) equals

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. .Let q be the maximum integral value of p in [0,10] for which the root...

    Text Solution

    |

  2. .Let f,g and h be the real valued function defined on R as f(x)={(x/ab...

    Text Solution

    |

  3. .Let a(1)=1,a(2),a(3),a(4),.... be consecutive natural number,then tan...

    Text Solution

    |

  4. .If a plane passes through the point (-1,k,0),(2,k,-1),(1,1,2) and is ...

    Text Solution

    |

  5. If the function f(x)=(x^(3))/(3)+2bx+(ax^(2))/(2) and g(x)=(x^(3))/(3)...

    Text Solution

    |

  6. The parabolas : ax^(2)+2bx+cy=0 and dx^(2)+2ex+fy=0 intersect on the l...

    Text Solution

    |

  7. Let vec a and vec b be two vectors,Let |vec a|=1,|vec b|=4 and vec a*v...

    Text Solution

    |

  8. lim(n rarr oo)3/n[4+(2+(1)/(n))^(2)+(2+(2)/(n))^(2)+....+(3-(1)/(n))^(...

    Text Solution

    |

  9. Let a,b,c>1,a^(3),b^(3) and c^(3) be in A.P.and log(a)b,log(c)a and lo...

    Text Solution

    |

  10. The range of the function f(x)=sqrt(3-x)+sqrt(2+x) is :

    Text Solution

    |

  11. Let S be the set of all value of a(1) for which the mean deviation abo...

    Text Solution

    |

  12. Let A be a point on the x -axis.Common tangents are drawn from A to th...

    Text Solution

    |

  13. .Consider the following statements: P: I have fever Q: I will not t...

    Text Solution

    |

  14. The number of ways of selecting two numbers a and b,a in {2,4,6,...,10...

    Text Solution

    |

  15. The solution of the differential equation (dy)/(dx)=-((x^(2)+3y^(2))/(...

    Text Solution

    |

  16. Let lambda in R,vec(a)=lambdahat i+2hat j-3hat k,vec(b)=hat i-lambdaha...

    Text Solution

    |

  17. For alpha,beta in R,suppose the system of linear equations x-y+z=5 2x+...

    Text Solution

    |

  18. Let a line L passes through the point P(2,3,1) and be parallel to the ...

    Text Solution

    |

  19. Let P(a1,b1) and Q(a(2),b(2)) be two distinct points on a circle with ...

    Text Solution

    |

  20. The 8^(th) common term of the series S(1)=3+7+11+15+19+...... S(2)=1...

    Text Solution

    |