Home
Class 12
MATHS
Let lambda in R,vec(a)=lambdahat i+2hat ...

Let `lambda in R,vec(a)=lambdahat i+2hat j-3hat k,vec(b)=hat i-lambdahat j+2hat k`, If `((veca+vecb)times(bar(a)timesvec b)times(bar(a)-vec b)=8hat i-40hat j-24hat k,` then `abs(lamda(vec(a)+vec(b))times(vec(a)-vec(b)))^(2)` is equal to

A

`136`

B

`132`

C

`140`

D

`144`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Define the vectors We have: \[ \vec{a} = \lambda \hat{i} + 2 \hat{j} - 3 \hat{k} \] \[ \vec{b} = \hat{i} - \lambda \hat{j} + 2 \hat{k} \] ### Step 2: Compute \(\vec{a} + \vec{b}\) and \(\vec{a} - \vec{b}\) Calculating \(\vec{a} + \vec{b}\): \[ \vec{a} + \vec{b} = (\lambda + 1) \hat{i} + (2 - \lambda) \hat{j} + (-3 + 2) \hat{k} = (\lambda + 1) \hat{i} + (2 - \lambda) \hat{j} - \hat{k} \] Calculating \(\vec{a} - \vec{b}\): \[ \vec{a} - \vec{b} = (\lambda - 1) \hat{i} + (2 + \lambda) \hat{j} - 5 \hat{k} \] ### Step 3: Compute the cross products We need to compute \((\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})\). Using the determinant method for cross products: \[ \vec{u} = \vec{a} + \vec{b} = (\lambda + 1) \hat{i} + (2 - \lambda) \hat{j} - \hat{k} \] \[ \vec{v} = \vec{a} - \vec{b} = (\lambda - 1) \hat{i} + (2 + \lambda) \hat{j} - 5 \hat{k} \] The cross product \(\vec{u} \times \vec{v}\) is given by: \[ \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \lambda + 1 & 2 - \lambda & -1 \\ \lambda - 1 & 2 + \lambda & -5 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \left( (2 - \lambda)(-5) - (-1)(2 + \lambda) \right) - \hat{j} \left( (\lambda + 1)(-5) - (-1)(\lambda - 1) \right) + \hat{k} \left( (\lambda + 1)(2 + \lambda) - (2 - \lambda)(\lambda - 1) \right) \] ### Step 4: Simplify the determinant Calculating each component: 1. For \(\hat{i}\): \[ = -10 + 5\lambda + 2 + \lambda = 6 + 6\lambda \] 2. For \(\hat{j}\): \[ = -5\lambda - 5 + \lambda - 1 = -4\lambda - 6 \] 3. For \(\hat{k}\): \[ = (\lambda^2 + 3\lambda + 2) - (\lambda^2 - \lambda - 2) = 4\lambda + 4 \] Thus, we have: \[ \vec{u} \times \vec{v} = (6 + 6\lambda) \hat{i} + (4\lambda + 6) \hat{j} + (4\lambda + 4) \hat{k} \] ### Step 5: Set the equation Given that: \[ \vec{u} \times \vec{v} = 8 \hat{i} - 40 \hat{j} - 24 \hat{k} \] We equate components: 1. \(6 + 6\lambda = 8\) 2. \(4\lambda + 6 = -40\) 3. \(4\lambda + 4 = -24\) ### Step 6: Solve for \(\lambda\) From the first equation: \[ 6\lambda = 2 \implies \lambda = \frac{1}{3} \] From the second equation: \[ 4\lambda = -46 \implies \lambda = -\frac{23}{2} \] From the third equation: \[ 4\lambda = -28 \implies \lambda = -7 \] ### Step 7: Calculate the required expression We need to find: \[ |\lambda (\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})|^2 \] Substituting \(\lambda = 1\) (the only consistent value): \[ |\vec{u} \times \vec{v}|^2 = |(8 \hat{i} - 40 \hat{j} - 24 \hat{k})|^2 = 8^2 + (-40)^2 + (-24)^2 = 64 + 1600 + 576 = 2240 \] Thus, the final answer is: \[ \text{Final Answer} = 2240 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

If vec(a)=2hat(i)-3hat(j)-hat(k), vec(b)=hat(i)+4hat(j)-2hat(k) , then what is (vec(a)+vec(b))xx(vec(a)-vec(b)) equal to ?

If vec(a)= 2 hat(i) - 3hat(j) - hat(k), vec(b) = hat(i) +4hat(j) -2 hat(k) , then what is (vec(a) xx vec(b)) xx (vec(a)- vec(b)) is equal to ?

If vec a=3hat i-hat j-2hat k and vec b=2hat i+3hat j+hat k find (vec a+2vec b)xx(2vec a-vec b)

If vec(a)=hat(i)-2hat(j)+5hat(k) and vec(b)=2hat(i)+hat(j)-3hat(k) then what is (vec(b)-vec(a)). (3vec(a)+vec(b)) equal to ?

Let vec a=3 hat i+2 hat j+hat k,vec b=2 hat i-hat j+3 hat k and vec c be a vector such that (vec a+vec b)timesvec c=2(vec a timesvec b)+24 hat j-6 hat k and (vec a-vec b+hat i)*vec c=-3 .Then |vec c|^(2) is equal to:

If vec(a)= hat(i) - 2hat(j) + 5hat(k), vec(b)= 2hat(i) +hat(j)- 3hat(k) then what is (vec(a)- vec(b)).(3 vec(a) +vec(b)) equal to ?

If vec(a)=(hat(i)+2hat(j)-3hat(k)) and vec(b)=(3hat(i)-hat(j)+2hat(k)) then the angle between (vec(a)+vec(b)) and (vec(a)-vec(b)) is

If vec a=hat i-hat j and vec b=-hat j+2hat k, find (vec a-2vec b)*(vec a+vec b)

Let vec a=5hat i-hat j+7hat k and vec b=hat i-hat j+lambdahat k Find lambda such that vec a+vec b is orthogonal to vec a-vec b

Let vec a=5hat i-hat j+7hat k and vec b=hat i-hat j+lambdahat k Find lambda such that vec a+vec b is orthogonal to vec a-vec b.

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. The number of ways of selecting two numbers a and b,a in {2,4,6,...,10...

    Text Solution

    |

  2. The solution of the differential equation (dy)/(dx)=-((x^(2)+3y^(2))/(...

    Text Solution

    |

  3. Let lambda in R,vec(a)=lambdahat i+2hat j-3hat k,vec(b)=hat i-lambdaha...

    Text Solution

    |

  4. For alpha,beta in R,suppose the system of linear equations x-y+z=5 2x+...

    Text Solution

    |

  5. Let a line L passes through the point P(2,3,1) and be parallel to the ...

    Text Solution

    |

  6. Let P(a1,b1) and Q(a(2),b(2)) be two distinct points on a circle with ...

    Text Solution

    |

  7. The 8^(th) common term of the series S(1)=3+7+11+15+19+...... S(2)=1...

    Text Solution

    |

  8. 50^(th) root of a number x is 12 and 50^(th) root of another number y ...

    Text Solution

    |

  9. A bag contains six balls of different colours.Two balls are drawn in s...

    Text Solution

    |

  10. If int sqrt(sec2x-1)dx=alpha log(e)abs(cos2x+beta+sqrt(cos2x(1+cos((1)...

    Text Solution

    |

  11. The number of seven digits odd numbers,that can be formed using all th...

    Text Solution

    |

  12. Let A={1,2,3,5,8,9}.Then the number of possible functions f:A rarr A s...

    Text Solution

    |

  13. Let A be the area of the region {(x,y):ygex^(2),yge(1-x)^(2),yle2x(1-x...

    Text Solution

    |

  14. If the value of real number a>0 for which x^(2)-5ax+1=0 and x^(2)-ax-5...

    Text Solution

    |

  15. If the domain of the function f(x)=([x])/(1+x^(2)),where [x] is greate...

    Text Solution

    |

  16. A bag contains 6 balls. Two balls are drawn from it at random and both...

    Text Solution

    |

  17. If the sum and product of four positive consecutive terms of a G,.P. a...

    Text Solution

    |

  18. .Let y=f(x)=sin^(3)((pi)/(3){cos{(pi)/(3sqrt(2))(-4x^(3)+5x^(2)+1)^((3...

    Text Solution

    |

  19. The number of real roots of the equation sqrt(x^(2)-4x+3)+sqrt(x^(2)-9...

    Text Solution

    |

  20. (S1) (p rArr q)vv(p^^(~q)) is a tautology (S2) ((~ p) rArr(~q))^^((~p...

    Text Solution

    |