Home
Class 12
MATHS
If the domain of the function f(x)=([x])...

If the domain of the function `f(x)=([x])/(1+x^(2))`,where `[x]` is greatest integer `lex,` is `[2,6],` then its range is

A

`((5)/(37),(2)/(5))`

B

`((5)/(26),(2)/(5))]-{(9)/(29),(27)/(109),(18)/(89),(9)/(53)}`

C

`((5)/(26),(2)/(5))]`

D

`((5)/(37),(2)/(5))-{(9)/(29),(27)/(109),(8)/(89),(9)/(53)}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \frac{[x]}{1 + x^2} \) where the domain is given as \( [2, 6) \), we will follow these steps: ### Step 1: Identify the intervals for the greatest integer function The greatest integer function \( [x] \) takes on constant values over intervals. For the domain \( [2, 6) \), we can break it down into sub-intervals based on the values of \( [x] \): - For \( 2 \leq x < 3 \), \( [x] = 2 \) - For \( 3 \leq x < 4 \), \( [x] = 3 \) - For \( 4 \leq x < 5 \), \( [x] = 4 \) - For \( 5 \leq x < 6 \), \( [x] = 5 \) ### Step 2: Write the function in each interval Now we can express \( f(x) \) in each of these intervals: - For \( 2 \leq x < 3 \): \[ f(x) = \frac{2}{1 + x^2} \] - For \( 3 \leq x < 4 \): \[ f(x) = \frac{3}{1 + x^2} \] - For \( 4 \leq x < 5 \): \[ f(x) = \frac{4}{1 + x^2} \] - For \( 5 \leq x < 6 \): \[ f(x) = \frac{5}{1 + x^2} \] ### Step 3: Find the maximum and minimum values in each interval Next, we will find the maximum and minimum values of \( f(x) \) in each interval. 1. **For \( 2 \leq x < 3 \)**: \[ f(2) = \frac{2}{1 + 2^2} = \frac{2}{5} = 0.4 \] As \( x \) approaches 3, \( f(x) \) approaches: \[ f(3) = \frac{2}{10} = 0.2 \] So, the range in this interval is \( [0.2, 0.4] \). 2. **For \( 3 \leq x < 4 \)**: \[ f(3) = \frac{3}{10} = 0.3 \] As \( x \) approaches 4: \[ f(4) = \frac{3}{17} \approx 0.176 \] So, the range in this interval is \( [0.176, 0.3] \). 3. **For \( 4 \leq x < 5 \)**: \[ f(4) = \frac{4}{17} \approx 0.235 \] As \( x \) approaches 5: \[ f(5) = \frac{4}{26} \approx 0.154 \] So, the range in this interval is \( [0.154, 0.235] \). 4. **For \( 5 \leq x < 6 \)**: \[ f(5) = \frac{5}{26} \approx 0.192 \] As \( x \) approaches 6: \[ f(6) = \frac{5}{37} \approx 0.135 \] So, the range in this interval is \( [0.135, 0.192] \). ### Step 4: Combine the ranges Now, we need to combine the ranges from all intervals: - From \( [2, 3) \): \( [0.2, 0.4] \) - From \( [3, 4) \): \( [0.176, 0.3] \) - From \( [4, 5) \): \( [0.154, 0.235] \) - From \( [5, 6) \): \( [0.135, 0.192] \) ### Step 5: Determine the overall range The overall range is the union of all these intervals: - The minimum value is \( \frac{5}{37} \) (approximately \( 0.135 \)). - The maximum value is \( \frac{2}{5} \) (approximately \( 0.4 \)). Thus, the range of the function \( f(x) \) is: \[ \left[ \frac{5}{37}, \frac{2}{5} \right] \] ### Final Answer The range of the function \( f(x) = \frac{[x]}{1 + x^2} \) where \( x \in [2, 6) \) is: \[ \left[ \frac{5}{37}, \frac{2}{5} \right] \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(1)/([x^(2)-1] is (where [.] is greatest integer function)

The domain of the function f(x)=sin^(-1)[2x^(2)-3], where [.] is greatest integer function,is

The domain of the function f(x)=(sin^(-1)x)/([x]) is (where [ ] is greatest integer function)

The domain of the function f(x)=(sin^(-1)x)/([x]) is (where is greatest integer function)

Find domain of f(x)=(1)/(sqrt([x]^(2)-[x]-6)) where [x] is greatest integer <=x

The range of the function f(x)=sgn(x-[x])+1 is (where [.] is the greatest integer function)

The domain of the function f(x)=([x+3]-x)/([x-5](x-[x])) is (where [ ] is the greatest integer function

The domain of the function f(x)= ln([[x]]/(5-[x])) where [ . ] denotes the greatest integer function is

The range of the function f(x)=(tan(pi[x+1]))/(x^(4)+1) (where, [.] is the greatest integer function) is

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. Let A be the area of the region {(x,y):ygex^(2),yge(1-x)^(2),yle2x(1-x...

    Text Solution

    |

  2. If the value of real number a>0 for which x^(2)-5ax+1=0 and x^(2)-ax-5...

    Text Solution

    |

  3. If the domain of the function f(x)=([x])/(1+x^(2)),where [x] is greate...

    Text Solution

    |

  4. A bag contains 6 balls. Two balls are drawn from it at random and both...

    Text Solution

    |

  5. If the sum and product of four positive consecutive terms of a G,.P. a...

    Text Solution

    |

  6. .Let y=f(x)=sin^(3)((pi)/(3){cos{(pi)/(3sqrt(2))(-4x^(3)+5x^(2)+1)^((3...

    Text Solution

    |

  7. The number of real roots of the equation sqrt(x^(2)-4x+3)+sqrt(x^(2)-9...

    Text Solution

    |

  8. (S1) (p rArr q)vv(p^^(~q)) is a tautology (S2) ((~ p) rArr(~q))^^((~p...

    Text Solution

    |

  9. Let the shortest distance between the lines L:(x-5)/(-2)=(y-lambda)/(0...

    Text Solution

    |

  10. .Let vec a=2hat i+hat j+hat k and vec b and vec c be two nonzero vecto...

    Text Solution

    |

  11. .Let alpha in(0,1) and beta=log(e)(1-alpha). Let P(n)(x)=x+(x^(2))/(2)...

    Text Solution

    |

  12. Let A=[[1,0,0],[0,4,-1],[0,12,-3]].Then the sum of the diagonal elemen...

    Text Solution

    |

  13. For all z in C on the curve C(1):abs(z)=4,let the locus of the point z...

    Text Solution

    |

  14. If sin^(-1)((alpha)/(17))+cos^(-1)((4)/(5))-tan^(-1)((77)/(36))=0,0 lt...

    Text Solution

    |

  15. For the system of linear equations x+y+z=6 alpha x+beta y+7z=3 x+2y...

    Text Solution

    |

  16. Let R be a relation on N times N defined by (a,b)R(c,d) if and only if...

    Text Solution

    |

  17. The value of int((pi)/(3))^((pi)/(2))(2+3sin x)/(sin x(1+cos x))dx is ...

    Text Solution

    |

  18. A wire of length 20m is to be cut into two pieces.A piece of length l(...

    Text Solution

    |

  19. If the maximum distance of normal to the ellipse (x^(2))/(4)+(y^(2))/(...

    Text Solution

    |

  20. Let a differentiable function f satisfy f(x)+int(3)^(x)(f(t))/(t)dt=sq...

    Text Solution

    |