Home
Class 12
MATHS
Let the shortest distance between the li...

Let the shortest distance between the lines `L:(x-5)/(-2)=(y-lambda)/(0)=(z+lambda)/(1),lambdage0` and `L1:x+1=y-1=4-z` be `2sqrt(6)`.If `(alpha,beta,gamma)` lies on `L`,then which of the following is NOT possible?

A

`alpha+2 beta=24`

B

`2 alpha+gamma=7`

C

`alpha-2 gamma=19`

D

`2 alpha-gamma=9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the shortest distance between the two lines \( L \) and \( L_1 \) and determine which of the given options is not possible for the coordinates \( (\alpha, \beta, \gamma) \) that lie on line \( L \). ### Step 1: Identify the direction ratios and points on the lines For line \( L \): \[ \frac{x - 5}{-2} = \frac{y - \lambda}{0} = \frac{z + \lambda}{1} \] The direction ratios of line \( L \) are \( (-2, 0, 1) \). For line \( L_1 \): \[ x + 1 = y - 1 = 4 - z \] The direction ratios of line \( L_1 \) are \( (1, 1, -1) \). ### Step 2: Calculate the cross product of the direction ratios Let \( \mathbf{b_1} = (-2, 0, 1) \) and \( \mathbf{b_2} = (1, 1, -1) \). The cross product \( \mathbf{b_1} \times \mathbf{b_2} \) is calculated as follows: \[ \mathbf{b_1} \times \mathbf{b_2} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 0 & 1 \\ 1 & 1 & -1 \end{vmatrix} \] Calculating the determinant: \[ = \mathbf{i} \left(0 \cdot (-1) - 1 \cdot 1\right) - \mathbf{j} \left(-2 \cdot (-1) - 1 \cdot 1\right) + \mathbf{k} \left(-2 \cdot 1 - 0 \cdot 1\right) \] \[ = -\mathbf{i} - (2 - 1)\mathbf{j} - 2\mathbf{k} = -\mathbf{i} - \mathbf{j} - 2\mathbf{k} \] Thus, \( \mathbf{b_1} \times \mathbf{b_2} = (-1, -1, -2) \). ### Step 3: Find the vector between points on the two lines Let \( A_1 = (5, \lambda, -\lambda) \) be a point on line \( L \) and \( A_2 = (-1, 1, 4) \) be a point on line \( L_1 \). The vector \( \mathbf{A_2 - A_1} \) is: \[ \mathbf{A_2 - A_1} = (-1 - 5, 1 - \lambda, 4 + \lambda) = (-6, 1 - \lambda, 4 + \lambda) \] ### Step 4: Use the formula for the shortest distance between skew lines The formula for the shortest distance \( d \) between two skew lines is given by: \[ d = \frac{|(\mathbf{A_2 - A_1}) \cdot (\mathbf{b_1} \times \mathbf{b_2})|}{|\mathbf{b_1} \times \mathbf{b_2}|} \] Calculating the dot product: \[ \mathbf{A_2 - A_1} \cdot (\mathbf{b_1} \times \mathbf{b_2}) = (-6, 1 - \lambda, 4 + \lambda) \cdot (-1, -1, -2) \] \[ = 6 - (1 - \lambda) \cdot 1 - 2(4 + \lambda) = 6 - (1 - \lambda) - (8 + 2\lambda) = 6 - 1 + \lambda - 8 - 2\lambda = -3 - \lambda \] Calculating the magnitude of the cross product: \[ |\mathbf{b_1} \times \mathbf{b_2}| = \sqrt{(-1)^2 + (-1)^2 + (-2)^2} = \sqrt{1 + 1 + 4} = \sqrt{6} \] Thus, the distance \( d \) is: \[ d = \frac{| -3 - \lambda |}{\sqrt{6}} \] ### Step 5: Set the distance equal to \( 2\sqrt{6} \) Setting the distance equal to \( 2\sqrt{6} \): \[ \frac{| -3 - \lambda |}{\sqrt{6}} = 2\sqrt{6} \] Multiplying both sides by \( \sqrt{6} \): \[ | -3 - \lambda | = 12 \] This gives us two cases: 1. \( -3 - \lambda = 12 \) → \( \lambda = -15 \) 2. \( -3 - \lambda = -12 \) → \( \lambda = 9 \) Since \( \lambda \geq 0 \), we take \( \lambda = 9 \). ### Step 6: Determine possible values for \( \alpha, \beta, \gamma \) From the line \( L \): \[ \alpha = -2k + 5, \quad \beta = \lambda = 9, \quad \gamma = k - 9 \] Now, we can express \( \alpha + 2\gamma \): \[ \alpha + 2\gamma = (-2k + 5) + 2(k - 9) = -2k + 5 + 2k - 18 = -13 \] ### Step 7: Check the options We need to determine which of the following is NOT possible: 1. \( \alpha + 2\beta = 24 \) 2. \( \alpha + 2\gamma = -13 \) 3. \( \alpha + 2\beta = 35 \) From our calculations: - \( \alpha + 2\gamma = -13 \) is possible. - \( \alpha + 2\beta = 24 \) gives \( -2k + 5 + 18 = 24 \) → \( -2k + 23 = 24 \) → \( k = -\frac{1}{2} \) (possible). - \( \alpha + 2\beta = 35 \) gives \( -2k + 5 + 18 = 35 \) → \( -2k + 23 = 35 \) → \( -2k = 12 \) → \( k = -6 \) (possible). Thus, the option that is NOT possible is: \[ \alpha + 2\beta = 35 \] ### Final Answer The option that is NOT possible is \( \alpha + 2\beta = 35 \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

The shortest distance between the lines (x-1)/(0)=(y+1)/(-1)=(z)/(1) and x+y+z+1=0, 2x-y+z+3=0 is :

The shortest distance between the line 1+x=2y=-12z and x=y+2=6z-6 is

The shortest distance between the lines 2x+y+z-1=0=3x+y+2z-2 and x=y=z, is

The shortest distance between the lines (x)/(m_(1))=(y)/(1)=(z-a)/(0) and (x)/(m_(2))=(y)/(1)=(z+a)/(0)

The shortest distance between the lines (x-2)/(2)=(y-3)/(2)=(z-0)/(1) and (x+4)/(-1)=(y-7)/(8)=(z-5)/(4) lies in the interval

The shortest distance between the lines x=y+2 = 6z-6 and x + 1 = 2y = - 12z is

Find the shortest distance between the lines (x-2)/(-1)=(y-5)/2=(z-0)/3\ a n d\ (x-0)/2=(y+1)/(-1)=(z-1)/2dot

If the shortest distance between the lines (x-1)/(alpha)=(y+1)/(-1)=(z)/(1) and x+y+z+1=0=2x-y+z+3 is (1)/(sqrt(3)) then value of alpha

Equation of the line of the shortest distance between the lines (x)/(1)=(y)/(-1)=(z)/(1) and (x-1)/(0)=(y+1)/(-2)=(z)/(1) is:

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. The number of real roots of the equation sqrt(x^(2)-4x+3)+sqrt(x^(2)-9...

    Text Solution

    |

  2. (S1) (p rArr q)vv(p^^(~q)) is a tautology (S2) ((~ p) rArr(~q))^^((~p...

    Text Solution

    |

  3. Let the shortest distance between the lines L:(x-5)/(-2)=(y-lambda)/(0...

    Text Solution

    |

  4. .Let vec a=2hat i+hat j+hat k and vec b and vec c be two nonzero vecto...

    Text Solution

    |

  5. .Let alpha in(0,1) and beta=log(e)(1-alpha). Let P(n)(x)=x+(x^(2))/(2)...

    Text Solution

    |

  6. Let A=[[1,0,0],[0,4,-1],[0,12,-3]].Then the sum of the diagonal elemen...

    Text Solution

    |

  7. For all z in C on the curve C(1):abs(z)=4,let the locus of the point z...

    Text Solution

    |

  8. If sin^(-1)((alpha)/(17))+cos^(-1)((4)/(5))-tan^(-1)((77)/(36))=0,0 lt...

    Text Solution

    |

  9. For the system of linear equations x+y+z=6 alpha x+beta y+7z=3 x+2y...

    Text Solution

    |

  10. Let R be a relation on N times N defined by (a,b)R(c,d) if and only if...

    Text Solution

    |

  11. The value of int((pi)/(3))^((pi)/(2))(2+3sin x)/(sin x(1+cos x))dx is ...

    Text Solution

    |

  12. A wire of length 20m is to be cut into two pieces.A piece of length l(...

    Text Solution

    |

  13. If the maximum distance of normal to the ellipse (x^(2))/(4)+(y^(2))/(...

    Text Solution

    |

  14. Let a differentiable function f satisfy f(x)+int(3)^(x)(f(t))/(t)dt=sq...

    Text Solution

    |

  15. Let y=f(x) represent a parabola with focus (-(1)/(2),0) and directrix ...

    Text Solution

    |

  16. Let a circle C(1) be obtained on rolling the circle x^(2)+y^(2)-4x-6y+...

    Text Solution

    |

  17. .Let alpha>0, be the smallest number such that the expansion of (x^((2...

    Text Solution

    |

  18. Let theta be the angle between the planes P(1):vec r . (hat i+hat j+2h...

    Text Solution

    |

  19. The remainder on dividing 5^(99) by 11 is

    Text Solution

    |

  20. Let a(1),a(2),...., an be in A.P.If a(5)=2a(7) and a(11)=18,then 12((...

    Text Solution

    |