Home
Class 12
MATHS
.Let vec a=2hat i+hat j+hat k and vec b ...

.Let `vec a=2hat i+hat j+hat k` and `vec b` and `vec c` be two nonzero vectors such that `|vec a+vec b+vec c|=|vec a+vec b-vec c|` and `vec b*vec c=0.`
Consider the following two statements :
(A) `|vec a+vec lamda c| ge |vec a|` for `lambda in R`
(B) `vec a` and `vec c` are always parallel
Then

A

Both (A) and (B) are correct

B

Only (A) is correct

C

Only (B) is correct

D

Neither (A) nor (B) is correct

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given conditions and statements step by step. ### Given: 1. \(\vec{a} = 2\hat{i} + \hat{j} + \hat{k}\) 2. \(|\vec{a} + \vec{b} + \vec{c}| = |\vec{a} + \vec{b} - \vec{c}|\) 3. \(\vec{b} \cdot \vec{c} = 0\) (indicating that \(\vec{b}\) and \(\vec{c}\) are orthogonal) ### Step 1: Analyze the first condition We start with the equation: \[ |\vec{a} + \vec{b} + \vec{c}| = |\vec{a} + \vec{b} - \vec{c}| \] Squaring both sides, we have: \[ |\vec{a} + \vec{b} + \vec{c}|^2 = |\vec{a} + \vec{b} - \vec{c}|^2 \] Expanding both sides: \[ (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c}) = (\vec{a} + \vec{b} - \vec{c}) \cdot (\vec{a} + \vec{b} - \vec{c}) \] This gives: \[ |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{a} \cdot \vec{c}) = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} - \vec{b} \cdot \vec{c} - \vec{a} \cdot \vec{c}) \] Cancelling out common terms, we have: \[ 2(\vec{b} \cdot \vec{c}) + 2(\vec{a} \cdot \vec{c}) = -2(\vec{b} \cdot \vec{c}) - 2(\vec{a} \cdot \vec{c}) \] Since \(\vec{b} \cdot \vec{c} = 0\), we simplify to: \[ 2(\vec{a} \cdot \vec{c}) = 0 \implies \vec{a} \cdot \vec{c} = 0 \] This indicates that \(\vec{a}\) and \(\vec{c}\) are orthogonal. ### Step 2: Analyze Statement A We need to check if: \[ |\vec{a} + \lambda \vec{c}| \geq |\vec{a}| \] for all \(\lambda \in \mathbb{R}\). Calculating the left-hand side: \[ |\vec{a} + \lambda \vec{c}|^2 = |\vec{a}|^2 + |\lambda \vec{c}|^2 + 2(\vec{a} \cdot (\lambda \vec{c})) \] Since \(\vec{a} \cdot \vec{c} = 0\), we have: \[ |\vec{a} + \lambda \vec{c}|^2 = |\vec{a}|^2 + \lambda^2 |\vec{c}|^2 \] We want: \[ |\vec{a}|^2 + \lambda^2 |\vec{c}|^2 \geq |\vec{a}|^2 \] This simplifies to: \[ \lambda^2 |\vec{c}|^2 \geq 0 \] This is true for all \(\lambda \in \mathbb{R}\) since the square of any real number is non-negative. ### Step 3: Analyze Statement B We need to check if \(\vec{a}\) and \(\vec{c}\) are always parallel. From our earlier calculation, we found that: \[ \vec{a} \cdot \vec{c} = 0 \] This means that \(\vec{a}\) and \(\vec{c}\) are orthogonal, not parallel. Therefore, Statement B is false. ### Conclusion - Statement A is true: \(|\vec{a} + \lambda \vec{c}| \geq |\vec{a}|\) for all \(\lambda \in \mathbb{R}\). - Statement B is false: \(\vec{a}\) and \(\vec{c}\) are not always parallel. ### Final Answer Only Statement A is correct. ---
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

If vec a=hat i+hat j+hat k and vec b=hat j-hat k, find a vector vec c such that vec a x vec c=vec b and vec a*vec c=3

Let veca=hat i-2 hat j+hat k, vecb=hat i-hat j+hat k and vec c is nonzero vector and vecb xx vec c= vec b xx vec a, vec a.vec c=0 . Find vecb.vec c .

Let vec a=2hat i+hat j-2hat k and vec b=hat i+hat j If c is a vector such that vec a*vec c=|vec c|,|vec c-vec a|=2sqrt(2) then maimum value of [vec avec bvec c]

Let vec a, vec b, vec c be three nonzero vectors such that vec a + vec b + vec c = vec 0 and lambdavec b xxvec a + vec b xxvec c + vec c xxvec a = 0 then lambda is

Let vec a=hat j-hat k and vec c=hat i-hat j-hat k. Then the vector b satisfying vec axvec b+vec c=0 and vec a*vec b=3, is

If vec a=hat i+hat j+hat hat j and vec b=hat i-2hat j+hat k, then find vector vec c such that vec a*vec c=2 and vec a xxvec c=vec b

vec a=3hat i-5hat j and vec b=6hat i+3hat j are two vectors and vec c is a vector such that vec c=vec a xxvec b then |vec a|:|vec b|:|vec c|

Let vec a=bar(i)-bar(j), vec b=hat i+j+hat k and vec c be a vector such that vec a times( vec b times vec c)=0 and vec a. vec c=4 , then |vec c| is equal to

let vec a=hat i+hat j-hat k and vec b=hat i-hat j-hat k and vec c be a unit vector perpendicular to vec a and coplanarwith vec a and vec b then vec c is

Let vec a=5hat i-hat j+7hat k and vec b=hat i-hat j+lambdahat k Find lambda such that vec a+vec b is orthogonal to vec a-vec b.

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. (S1) (p rArr q)vv(p^^(~q)) is a tautology (S2) ((~ p) rArr(~q))^^((~p...

    Text Solution

    |

  2. Let the shortest distance between the lines L:(x-5)/(-2)=(y-lambda)/(0...

    Text Solution

    |

  3. .Let vec a=2hat i+hat j+hat k and vec b and vec c be two nonzero vecto...

    Text Solution

    |

  4. .Let alpha in(0,1) and beta=log(e)(1-alpha). Let P(n)(x)=x+(x^(2))/(2)...

    Text Solution

    |

  5. Let A=[[1,0,0],[0,4,-1],[0,12,-3]].Then the sum of the diagonal elemen...

    Text Solution

    |

  6. For all z in C on the curve C(1):abs(z)=4,let the locus of the point z...

    Text Solution

    |

  7. If sin^(-1)((alpha)/(17))+cos^(-1)((4)/(5))-tan^(-1)((77)/(36))=0,0 lt...

    Text Solution

    |

  8. For the system of linear equations x+y+z=6 alpha x+beta y+7z=3 x+2y...

    Text Solution

    |

  9. Let R be a relation on N times N defined by (a,b)R(c,d) if and only if...

    Text Solution

    |

  10. The value of int((pi)/(3))^((pi)/(2))(2+3sin x)/(sin x(1+cos x))dx is ...

    Text Solution

    |

  11. A wire of length 20m is to be cut into two pieces.A piece of length l(...

    Text Solution

    |

  12. If the maximum distance of normal to the ellipse (x^(2))/(4)+(y^(2))/(...

    Text Solution

    |

  13. Let a differentiable function f satisfy f(x)+int(3)^(x)(f(t))/(t)dt=sq...

    Text Solution

    |

  14. Let y=f(x) represent a parabola with focus (-(1)/(2),0) and directrix ...

    Text Solution

    |

  15. Let a circle C(1) be obtained on rolling the circle x^(2)+y^(2)-4x-6y+...

    Text Solution

    |

  16. .Let alpha>0, be the smallest number such that the expansion of (x^((2...

    Text Solution

    |

  17. Let theta be the angle between the planes P(1):vec r . (hat i+hat j+2h...

    Text Solution

    |

  18. The remainder on dividing 5^(99) by 11 is

    Text Solution

    |

  19. Let a(1),a(2),...., an be in A.P.If a(5)=2a(7) and a(11)=18,then 12((...

    Text Solution

    |

  20. If the variance of the frequency distribution. is 3, then alpha is e...

    Text Solution

    |