Home
Class 12
MATHS
.Let alpha in(0,1) and beta=log(e)(1-alp...

.Let `alpha in(0,1)` and `beta=log_(e)(1-alpha)`. Let `P_(n)(x)=x+(x^(2))/(2)+(x^(3))/(3)+ . . . +(x^(n))/(n) , x in (0,1)`.
Then the integral `int_(0)^(alpha) (t^(50))/(1-t) dt` is equal to

A

`P_(50)(alpha)-beta`

B

`-(beta+P_(50)(alpha))`

C

`(beta+P_(50)(alpha))`

D

`beta-P_(50)(alpha)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\alpha} \frac{t^{50}}{1-t} dt \), we can follow these steps: ### Step 1: Rewrite the integrand We can rewrite the integrand \( \frac{1}{1-t} \) using its Taylor series expansion: \[ \frac{1}{1-t} = 1 + t + t^2 + t^3 + \ldots = \sum_{k=0}^{\infty} t^k \quad \text{for } |t| < 1 \] Thus, we can express the integral as: \[ I = \int_{0}^{\alpha} t^{50} \left( \sum_{k=0}^{\infty} t^k \right) dt \] ### Step 2: Interchange the sum and the integral We can interchange the sum and the integral (justified by uniform convergence on the interval): \[ I = \sum_{k=0}^{\infty} \int_{0}^{\alpha} t^{50+k} dt \] ### Step 3: Evaluate the integral The integral \( \int_{0}^{\alpha} t^{50+k} dt \) can be evaluated as: \[ \int_{0}^{\alpha} t^{50+k} dt = \frac{\alpha^{51+k}}{51+k} \] Thus, we have: \[ I = \sum_{k=0}^{\infty} \frac{\alpha^{51+k}}{51+k} \] ### Step 4: Recognize the series The series \( \sum_{k=0}^{\infty} \frac{x^{k}}{k+a} \) can be expressed in terms of the logarithm and the function \( P_n(x) \). Specifically, we can relate it to: \[ I = \alpha^{51} \sum_{k=0}^{\infty} \frac{\alpha^{k}}{51+k} \] This series can be recognized as \( -\ln(1-\alpha) - P_{50}(\alpha) \) where \( P_n(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots + \frac{x^n}{n} \). ### Step 5: Substitute \( \beta \) Given that \( \beta = \ln(1 - \alpha) \), we can rewrite the integral: \[ I = -\beta - P_{50}(\alpha) \] ### Final Result Thus, the final result for the integral is: \[ I = -\ln(1 - \alpha) - P_{50}(\alpha) \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

integrate int_(0)^(1)(x^(alpha)-1)/(log x)

Let f(x)=(e^(x)+1)/(e^(x)-1) and int_(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1) dx= alpha "Then" , int_(-1)^(1) t^(3) f(t) dt is equal to

Let f(x)=(e^(x)+1)/(e^(-x)-1) and int_(0)^(1)x^(3)(e^(x)+1)/(e^(x)-1) dx=alpha"then", int_(-1)^(1)int t^(3)f(t)dt is equal to

If int_(0)^(x)((t^(3)+t)dt)/((1+3t^(2)))=f(x) , then int_(0)^(1)f^(')(x) dx is equal to

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f(x)=(e^x+1)/(e^x-1) and int_0^1x^3*(e^x+1)/(e^x-1)dx=alpha. Then int_-1^1 t^3f(t) dt is equal to

The derivative of f(x)=int_(x^(2))^(x^(3))(1)/(log_(e)(t))dt,(x>0), is

If int _(0) ^(pi) ( sin ^(3) x) e^(- sin^(2)x)dx = alpha - (beta)/( e) int _(0)^(1) sqrt(t) e^(t) " dt , then " alpha + beta is equal to _____

Let alpha,beta be real number with 0<=alpha<=beta and f(x)=x^(2)-(alpha+beta)x+alpha beta such that int_(1)^(1)f(x)dx=1. Find the maximum value of int_(alpha)^( alpha)f(x)dx

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. Let the shortest distance between the lines L:(x-5)/(-2)=(y-lambda)/(0...

    Text Solution

    |

  2. .Let vec a=2hat i+hat j+hat k and vec b and vec c be two nonzero vecto...

    Text Solution

    |

  3. .Let alpha in(0,1) and beta=log(e)(1-alpha). Let P(n)(x)=x+(x^(2))/(2)...

    Text Solution

    |

  4. Let A=[[1,0,0],[0,4,-1],[0,12,-3]].Then the sum of the diagonal elemen...

    Text Solution

    |

  5. For all z in C on the curve C(1):abs(z)=4,let the locus of the point z...

    Text Solution

    |

  6. If sin^(-1)((alpha)/(17))+cos^(-1)((4)/(5))-tan^(-1)((77)/(36))=0,0 lt...

    Text Solution

    |

  7. For the system of linear equations x+y+z=6 alpha x+beta y+7z=3 x+2y...

    Text Solution

    |

  8. Let R be a relation on N times N defined by (a,b)R(c,d) if and only if...

    Text Solution

    |

  9. The value of int((pi)/(3))^((pi)/(2))(2+3sin x)/(sin x(1+cos x))dx is ...

    Text Solution

    |

  10. A wire of length 20m is to be cut into two pieces.A piece of length l(...

    Text Solution

    |

  11. If the maximum distance of normal to the ellipse (x^(2))/(4)+(y^(2))/(...

    Text Solution

    |

  12. Let a differentiable function f satisfy f(x)+int(3)^(x)(f(t))/(t)dt=sq...

    Text Solution

    |

  13. Let y=f(x) represent a parabola with focus (-(1)/(2),0) and directrix ...

    Text Solution

    |

  14. Let a circle C(1) be obtained on rolling the circle x^(2)+y^(2)-4x-6y+...

    Text Solution

    |

  15. .Let alpha>0, be the smallest number such that the expansion of (x^((2...

    Text Solution

    |

  16. Let theta be the angle between the planes P(1):vec r . (hat i+hat j+2h...

    Text Solution

    |

  17. The remainder on dividing 5^(99) by 11 is

    Text Solution

    |

  18. Let a(1),a(2),...., an be in A.P.If a(5)=2a(7) and a(11)=18,then 12((...

    Text Solution

    |

  19. If the variance of the frequency distribution. is 3, then alpha is e...

    Text Solution

    |

  20. Let vec a and vec b be two vector such that |vec a|=sqrt(14),|vec b|=s...

    Text Solution

    |