Home
Class 12
MATHS
Let A=[[1,0,0],[0,4,-1],[0,12,-3]].Then ...

Let `A=[[1,0,0],[0,4,-1],[0,12,-3]]`.Then the sum of the diagonal elements of the matrix `(A+I)^(11)` is equal to :

A

`2050`

B

`4094`

C

`6144`

D

`4097`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the diagonal elements of the matrix \((A + I)^{11}\), where \(A\) is given as: \[ A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 12 & -3 \end{bmatrix} \] and \(I\) is the identity matrix of the same size: \[ I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \] ### Step 1: Calculate \(A + I\) First, we add the matrix \(A\) to the identity matrix \(I\): \[ A + I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 12 & -3 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 + 1 & 0 & 0 \\ 0 & 4 + 1 & -1 \\ 0 & 12 & -3 + 1 \end{bmatrix} \] This simplifies to: \[ A + I = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & -1 \\ 0 & 12 & -2 \end{bmatrix} \] ### Step 2: Find the eigenvalues of \(A + I\) The next step is to find the eigenvalues of the matrix \(A + I\). The eigenvalues can be found by calculating the determinant of \(A + I - \lambda I\): \[ \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & 5 - \lambda & -1 \\ 0 & 12 & -2 - \lambda \end{vmatrix} \] Calculating this determinant, we have: \[ (2 - \lambda) \begin{vmatrix} 5 - \lambda & -1 \\ 12 & -2 - \lambda \end{vmatrix} \] Calculating the 2x2 determinant: \[ = (5 - \lambda)(-2 - \lambda) - (-1)(12) = (5 - \lambda)(-2 - \lambda) + 12 \] Expanding this gives: \[ = -10 - 5\lambda + 2\lambda + \lambda^2 + 12 = \lambda^2 - 3\lambda + 2 \] Setting the determinant to zero to find the eigenvalues: \[ (2 - \lambda)(\lambda^2 - 3\lambda + 2) = 0 \] The eigenvalues are \(\lambda = 2\) and the roots of \(\lambda^2 - 3\lambda + 2 = 0\), which are \(\lambda = 1\) and \(\lambda = 2\). Thus, the eigenvalues of \(A + I\) are \(2, 1, 2\). ### Step 3: Calculate the sum of the diagonal elements of \((A + I)^{11}\) The sum of the diagonal elements of a matrix is equal to the sum of its eigenvalues raised to the power of the matrix: \[ \text{Sum of diagonal elements of } (A + I)^{11} = 2^{11} + 1^{11} + 2^{11} = 2 \cdot 2^{11} + 1 = 2^{12} + 1 \] Calculating \(2^{12} + 1\): \[ 2^{12} = 4096 \implies 2^{12} + 1 = 4096 + 1 = 4097 \] ### Final Answer Thus, the sum of the diagonal elements of the matrix \((A + I)^{11}\) is: \[ \boxed{4097} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

Let A = [[1,0,0],[0,1,1],[1,1,1]] and B=A^20. Then the sum of the elements of the first column of B is :

If A=[(3,-1),(2,0)] and B=[(2,-5),(3,1)] then sum of diagonal elements of (A+B) is

Let A=[(1,0,0),(1,1,0),(1,1,1)] and B=A^20 . Then the sum of the elements of the first column of B is

Let matrix A=[[1,0,0],[1,0,1],[0,1,0]] then the value of |A^(2012)-I| is equal to

Let "A" be a 2times2 real matrix and "I" be the identity matrix of order "2" .If the roots of the equation , [|A-xI|=0 be "-1" and "3" ,then the sum of the diagonal elements of the matrix A^(2) is______________

Let {:A=[(0,0,-1),(0,-1,0),(-1,0,0)]:} . The only correct statement aboul the matrix A is

If A = [(1,1,1),(0,1,1),(0,0,1)] and M = A + A^(2) + A^(3) + . . . . + A^(20) then the sum of all the elements of the matrix M is equal to _____

Let Z=[(1,1,3),(5,1,2),(3,1,0)] and P=[(1,0,2),(2,1,0),(3,0,1)] . If Z=PQ^(-1) , where Q is a square matrix of order 3, then the value of Tr((adjQ)P) is equal to (where Tr(A) represents the trace of a matrix A i.e. the sum of all the diagonal elements of the matrix A and adjB represents the adjoint matrix of matrix B)

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. .Let vec a=2hat i+hat j+hat k and vec b and vec c be two nonzero vecto...

    Text Solution

    |

  2. .Let alpha in(0,1) and beta=log(e)(1-alpha). Let P(n)(x)=x+(x^(2))/(2)...

    Text Solution

    |

  3. Let A=[[1,0,0],[0,4,-1],[0,12,-3]].Then the sum of the diagonal elemen...

    Text Solution

    |

  4. For all z in C on the curve C(1):abs(z)=4,let the locus of the point z...

    Text Solution

    |

  5. If sin^(-1)((alpha)/(17))+cos^(-1)((4)/(5))-tan^(-1)((77)/(36))=0,0 lt...

    Text Solution

    |

  6. For the system of linear equations x+y+z=6 alpha x+beta y+7z=3 x+2y...

    Text Solution

    |

  7. Let R be a relation on N times N defined by (a,b)R(c,d) if and only if...

    Text Solution

    |

  8. The value of int((pi)/(3))^((pi)/(2))(2+3sin x)/(sin x(1+cos x))dx is ...

    Text Solution

    |

  9. A wire of length 20m is to be cut into two pieces.A piece of length l(...

    Text Solution

    |

  10. If the maximum distance of normal to the ellipse (x^(2))/(4)+(y^(2))/(...

    Text Solution

    |

  11. Let a differentiable function f satisfy f(x)+int(3)^(x)(f(t))/(t)dt=sq...

    Text Solution

    |

  12. Let y=f(x) represent a parabola with focus (-(1)/(2),0) and directrix ...

    Text Solution

    |

  13. Let a circle C(1) be obtained on rolling the circle x^(2)+y^(2)-4x-6y+...

    Text Solution

    |

  14. .Let alpha>0, be the smallest number such that the expansion of (x^((2...

    Text Solution

    |

  15. Let theta be the angle between the planes P(1):vec r . (hat i+hat j+2h...

    Text Solution

    |

  16. The remainder on dividing 5^(99) by 11 is

    Text Solution

    |

  17. Let a(1),a(2),...., an be in A.P.If a(5)=2a(7) and a(11)=18,then 12((...

    Text Solution

    |

  18. If the variance of the frequency distribution. is 3, then alpha is e...

    Text Solution

    |

  19. Let vec a and vec b be two vector such that |vec a|=sqrt(14),|vec b|=s...

    Text Solution

    |

  20. Let the line L:(x-1)/(2)=(y+1)/(-1)=(z-3)/(1) intersect the plane 2x+y...

    Text Solution

    |