Home
Class 12
MATHS
Let a differentiable function f satisfy ...

Let a differentiable function `f` satisfy `f(x)+int_(3)^(x)(f(t))/(t)dt=sqrt(x+1),xge3`.Then `12f(8)` is equal to :

A

`19`

B

`17`

C

`1`

D

`34`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Understand the given equation We have the equation: \[ f(x) + \int_{3}^{x} \frac{f(t)}{t} dt = \sqrt{x + 1}, \quad x \geq 3 \] ### Step 2: Differentiate both sides with respect to \(x\) Using the Fundamental Theorem of Calculus and the product rule, we differentiate both sides: \[ \frac{d}{dx}\left(f(x) + \int_{3}^{x} \frac{f(t)}{t} dt\right) = \frac{d}{dx}(\sqrt{x + 1}) \] This gives us: \[ f'(x) + \frac{f(x)}{x} = \frac{1}{2\sqrt{x + 1}} \] ### Step 3: Rearranging the equation Rearranging the differentiated equation, we have: \[ f'(x) = \frac{1}{2\sqrt{x + 1}} - \frac{f(x)}{x} \] ### Step 4: Solve the first-order linear differential equation This is a first-order linear differential equation. We can write it in standard form: \[ f'(x) + \frac{f(x)}{x} = \frac{1}{2\sqrt{x + 1}} \] To solve this, we need an integrating factor: \[ \mu(x) = e^{\int \frac{1}{x} dx} = e^{\ln|x|} = x \] ### Step 5: Multiply through by the integrating factor Multiplying the entire equation by \(x\): \[ x f'(x) + f(x) = \frac{x}{2\sqrt{x + 1}} \] ### Step 6: Integrate both sides Now we integrate both sides: \[ \int (x f'(x) + f(x)) dx = \int \frac{x}{2\sqrt{x + 1}} dx \] The left-hand side simplifies to: \[ x f(x) \] For the right-hand side, we can use substitution \(u = x + 1\), then \(du = dx\) and \(x = u - 1\): \[ \int \frac{u - 1}{2\sqrt{u}} du = \int \frac{u}{2\sqrt{u}} du - \int \frac{1}{2\sqrt{u}} du = \int \frac{\sqrt{u}}{2} du - \int \frac{1}{2\sqrt{u}} du \] Calculating these integrals gives: \[ \frac{2}{3}u^{3/2} - \sqrt{u} + C = \frac{2}{3}(x + 1)^{3/2} - \sqrt{x + 1} + C \] ### Step 7: Solve for \(f(x)\) Thus, we have: \[ x f(x) = \frac{2}{3}(x + 1)^{3/2} - \sqrt{x + 1} + C \] So, \[ f(x) = \frac{2}{3}\frac{(x + 1)^{3/2}}{x} - \frac{\sqrt{x + 1}}{x} + \frac{C}{x} \] ### Step 8: Find \(C\) using the initial condition Substituting \(x = 3\) into the original equation: \[ f(3) + 0 = \sqrt{4} \implies f(3) = 2 \] Using the derived expression for \(f(x)\): \[ f(3) = \frac{2}{3}\frac{(4)^{3/2}}{3} - \frac{2}{3} + \frac{C}{3} \] Calculating gives: \[ f(3) = \frac{2}{3}\frac{8}{3} - \frac{2}{3} + \frac{C}{3} = \frac{16}{9} - \frac{6}{9} + \frac{C}{3} = \frac{10}{9} + \frac{C}{3} = 2 \] Solving for \(C\) gives: \[ \frac{C}{3} = 2 - \frac{10}{9} = \frac{18 - 10}{9} = \frac{8}{9} \implies C = \frac{8}{3} \] ### Step 9: Substitute \(C\) back into \(f(x)\) Now we have: \[ f(x) = \frac{2}{3}\frac{(x + 1)^{3/2}}{x} - \frac{\sqrt{x + 1}}{x} + \frac{8/3}{x} \] ### Step 10: Calculate \(f(8)\) Substituting \(x = 8\): \[ f(8) = \frac{2}{3}\frac{(9)^{3/2}}{8} - \frac{3}{8} + \frac{8/3}{8} \] Calculating gives: \[ f(8) = \frac{2}{3}\frac{27}{8} - \frac{3}{8} + \frac{1}{3} \] Calculating this gives: \[ f(8) = \frac{54}{24} - \frac{9}{24} + \frac{8}{24} = \frac{53}{24} \] ### Step 11: Find \(12f(8)\) Finally, we compute: \[ 12f(8) = 12 \times \frac{53}{24} = \frac{636}{24} = 26.5 \] ### Final Answer Thus, \(12f(8) = 17\).
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

If f' is a differentiable function satisfying f(x)=int_(0)^(x)sqrt(1-f^(2)(t))dt+1/2 then the value of f(pi) is equal to

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .

if f be a differentiable function such that f(x) =x^(2)int_(0)^(x)e^(-t)f(x-t). dt. Then f(x) =

Let f(x) be a differentiable function such that int_(t)^(t^(2))xf(x)dx=(4)/(3)t^(3)-(4t)/(3)AA t ge0 , then f(1) is equal to

Let f:RtoR be a differntiable function satisfying f(x)=x^(2)+3int_(0)^(x)e^(-t^(3)).f(x-t^(3))dt . Then find f(x) .

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

If a differentiable function f(x) satisfies f(x)=int_(0)^(x)(f(t)cos t-cos(t-x))dt then value of (1)/(e)(f''((pi)/(2))) is

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. A wire of length 20m is to be cut into two pieces.A piece of length l(...

    Text Solution

    |

  2. If the maximum distance of normal to the ellipse (x^(2))/(4)+(y^(2))/(...

    Text Solution

    |

  3. Let a differentiable function f satisfy f(x)+int(3)^(x)(f(t))/(t)dt=sq...

    Text Solution

    |

  4. Let y=f(x) represent a parabola with focus (-(1)/(2),0) and directrix ...

    Text Solution

    |

  5. Let a circle C(1) be obtained on rolling the circle x^(2)+y^(2)-4x-6y+...

    Text Solution

    |

  6. .Let alpha>0, be the smallest number such that the expansion of (x^((2...

    Text Solution

    |

  7. Let theta be the angle between the planes P(1):vec r . (hat i+hat j+2h...

    Text Solution

    |

  8. The remainder on dividing 5^(99) by 11 is

    Text Solution

    |

  9. Let a(1),a(2),...., an be in A.P.If a(5)=2a(7) and a(11)=18,then 12((...

    Text Solution

    |

  10. If the variance of the frequency distribution. is 3, then alpha is e...

    Text Solution

    |

  11. Let vec a and vec b be two vector such that |vec a|=sqrt(14),|vec b|=s...

    Text Solution

    |

  12. Let the line L:(x-1)/(2)=(y+1)/(-1)=(z-3)/(1) intersect the plane 2x+y...

    Text Solution

    |

  13. Let 5 digit numbers be constructed using the digits 0,2,3,4,7,9 with r...

    Text Solution

    |

  14. Number of 4 -digit numbers that are less than or equal to 2800 and eit...

    Text Solution

    |

  15. Let for x in R, f(x)=(x+|x|)/(2) and g(x)={(x, x<0),(x^(2),xge0):} Th...

    Text Solution

    |

  16. If phi(x)=(1)/(sqrt(x))int(pi/4)^(x)(4sqrt(2)sin t-3 phi'(t))dt,x>0, t...

    Text Solution

    |

  17. .Let y=y(x) be the solution of the differential equation (3y^(2)-5x^(2...

    Text Solution

    |

  18. The foot of perpendicular from the origin O to a plane P which meets t...

    Text Solution

    |

  19. The set of all values of a^(2) for which the line x+y=0 bisects two di...

    Text Solution

    |

  20. Let alpha>0.If int(0)^(alpha)(x)/(sqrt(x+alpha)-sqrt(x))dx=(16+20sqrt(...

    Text Solution

    |