Home
Class 12
MATHS
If phi(x)=(1)/(sqrt(x))int(pi/4)^(x)(4sq...

If `phi(x)=(1)/(sqrt(x))int_(pi/4)^(x)(4sqrt(2)sin t-3 phi'(t))dt,x>0,` then `phi'((pi)/(4))` is equal to

A

`(4)/(6+sqrt(pi))`

B

`(8)/(6+sqrt(pi))`

C

`(8)/(sqrt(pi))`

D

`(4)/(6-sqrt(pi))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \phi'(\frac{\pi}{4}) \) given the function \( \phi(x) \) defined as: \[ \phi(x) = \frac{1}{\sqrt{x}} \int_{\frac{\pi}{4}}^{x} \left( 4\sqrt{2} \sin t - 3 \phi'(t) \right) dt, \quad x > 0 \] ### Step 1: Evaluate \( \phi(\frac{\pi}{4}) \) First, we substitute \( x = \frac{\pi}{4} \) into the equation for \( \phi(x) \): \[ \phi\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{\frac{\pi}{4}}} \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \left( 4\sqrt{2} \sin t - 3 \phi'(t) \right) dt \] Since the upper and lower limits of the integral are the same, the integral evaluates to 0: \[ \phi\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{\frac{\pi}{4}}} \cdot 0 = 0 \] ### Step 2: Differentiate \( \phi(x) \) Next, we differentiate \( \phi(x) \) with respect to \( x \) using the product rule and the Fundamental Theorem of Calculus: \[ \phi'(x) = \frac{d}{dx} \left( \frac{1}{\sqrt{x}} \right) \int_{\frac{\pi}{4}}^{x} \left( 4\sqrt{2} \sin t - 3 \phi'(t) \right) dt + \frac{1}{\sqrt{x}} \left( 4\sqrt{2} \sin x - 3 \phi'(x) \right) \] Using the derivative of \( \frac{1}{\sqrt{x}} \): \[ \frac{d}{dx} \left( \frac{1}{\sqrt{x}} \right) = -\frac{1}{2} x^{-\frac{3}{2}} \] Thus, we have: \[ \phi'(x) = -\frac{1}{2} x^{-\frac{3}{2}} \int_{\frac{\pi}{4}}^{x} \left( 4\sqrt{2} \sin t - 3 \phi'(t) \right) dt + \frac{1}{\sqrt{x}} \left( 4\sqrt{2} \sin x - 3 \phi'(x) \right) \] ### Step 3: Substitute \( x = \frac{\pi}{4} \) Now we substitute \( x = \frac{\pi}{4} \) into the differentiated equation: \[ \phi'\left(\frac{\pi}{4}\right) = -\frac{1}{2} \left(\frac{\pi}{4}\right)^{-\frac{3}{2}} \cdot 0 + \frac{1}{\sqrt{\frac{\pi}{4}}} \left( 4\sqrt{2} \sin\left(\frac{\pi}{4}\right) - 3 \phi'\left(\frac{\pi}{4}\right) \right) \] Since \( \phi\left(\frac{\pi}{4}\right) = 0 \), the first term is 0. Now we simplify the second term: \[ \phi'\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{\frac{\pi}{4}}} \left( 4\sqrt{2} \cdot \frac{1}{\sqrt{2}} - 3 \phi'\left(\frac{\pi}{4}\right) \right) \] This simplifies to: \[ \phi'\left(\frac{\pi}{4}\right) = \frac{2}{\sqrt{\pi}} \left( 4 - 3 \phi'\left(\frac{\pi}{4}\right) \right) \] ### Step 4: Solve for \( \phi'(\frac{\pi}{4}) \) Rearranging gives: \[ \phi'\left(\frac{\pi}{4}\right) + \frac{6}{\sqrt{\pi}} \phi'\left(\frac{\pi}{4}\right) = \frac{8}{\sqrt{\pi}} \] Combining terms: \[ \left(1 + \frac{6}{\sqrt{\pi}}\right) \phi'\left(\frac{\pi}{4}\right) = \frac{8}{\sqrt{\pi}} \] Solving for \( \phi'\left(\frac{\pi}{4}\right) \): \[ \phi'\left(\frac{\pi}{4}\right) = \frac{8/\sqrt{\pi}}{1 + \frac{6}{\sqrt{\pi}}} = \frac{8}{\sqrt{\pi} + 6} \] ### Final Answer Thus, the value of \( \phi'\left(\frac{\pi}{4}\right) \) is: \[ \phi'\left(\frac{\pi}{4}\right) = \frac{8}{\sqrt{\pi}} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

If phi(x)=2cos^(-1)((2)/(sqrt(x)))+sin^(-1)((4sqrt(x-4))/(x)), then phi'(9) is equal to

if f(x)=tan x,g(x)=sqrt(x),h(x)=(1-x^(2))/(1+x^(2)) and phi(x)=(ho(gof))(x), then phi((pi)/(3)) is equal to

phi(x)=int_(1/x)^( sqrt(x))sin(t^(2))dt, then find the value of phi'(1)

Let f(x)=sinx,g(x)=2x" and "h(x)=cosx. If phi(x)=["go"(fh)](x)," then "phi''((pi)/(4)) is equal to

int_(0)^((pi)/(4))sin^(-1)sqrt((x)/(a+x))dx

int_(0)^((pi)/(4))sin^(-1)sqrt((x)/(a+x))dx

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

int_(0)^((pi)/(2))sqrt(sin phi cos^(5)phidphi)

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. Number of 4 -digit numbers that are less than or equal to 2800 and eit...

    Text Solution

    |

  2. Let for x in R, f(x)=(x+|x|)/(2) and g(x)={(x, x<0),(x^(2),xge0):} Th...

    Text Solution

    |

  3. If phi(x)=(1)/(sqrt(x))int(pi/4)^(x)(4sqrt(2)sin t-3 phi'(t))dt,x>0, t...

    Text Solution

    |

  4. .Let y=y(x) be the solution of the differential equation (3y^(2)-5x^(2...

    Text Solution

    |

  5. The foot of perpendicular from the origin O to a plane P which meets t...

    Text Solution

    |

  6. The set of all values of a^(2) for which the line x+y=0 bisects two di...

    Text Solution

    |

  7. Let alpha>0.If int(0)^(alpha)(x)/(sqrt(x+alpha)-sqrt(x))dx=(16+20sqrt(...

    Text Solution

    |

  8. Let a(1),a(2),a(3),...... be an A.P.If a7=3,the product (a(1),a(4)) is...

    Text Solution

    |

  9. lim(x rarr oo)(((sqrt(3x+1)+sqrt(3x-1))^(6)+(sqrt(3x+1)-sqrt(3x-1))^6)...

    Text Solution

    |

  10. Let H be the hyperbola,whose foci are (1+-sqrt(2),0) and eccentricity ...

    Text Solution

    |

  11. The number of values of r in {p,q,~p,~q} for which (p^^q)implies (r vv...

    Text Solution

    |

  12. Among the relations S={(a,b):a,b in R-{0},2+(a)/(b)>0} and T={(a,b):a...

    Text Solution

    |

  13. The absolute minimum value,of the function f(x)=|x^(2)-x+1|+[x^(2)-x+1...

    Text Solution

    |

  14. Let (a,b) subset (0,2 pi) be the largest interval for which sin^(-1)(s...

    Text Solution

    |

  15. Let the mean and standard deviation of marks of class A of 100 student...

    Text Solution

    |

  16. Let f:R-{2,6} rarr R be real valued function defined as f(x)=(x^(2)+2x...

    Text Solution

    |

  17. The equation e^(4x)+8e^(3x)+13e^(2x)-8e^(x)+1=0,x in R has

    Text Solution

    |

  18. The complex number z=(i-1)/(cos((pi)/(3))+i sin((pi)/(3))) is equal to...

    Text Solution

    |

  19. f a point P(alpha,beta,gamma) satisfying (alpha,beta,gamma)((2,10,8),(...

    Text Solution

    |

  20. Let P be the plane, passing through the point (1, – 1, – 5) and perpen...

    Text Solution

    |