Home
Class 12
MATHS
lim(x rarr oo)(((sqrt(3x+1)+sqrt(3x-1))^...

`lim_(x rarr oo)(((sqrt(3x+1)+sqrt(3x-1))^(6)+(sqrt(3x+1)-sqrt(3x-1))^6)/((x+sqrt(x^(2)-1))^(6)+(x-sqrt(x^(2)-1))^(6)))x^(3)`

A

is equal to `(27)/(2)`

B

is equal to `9`

C

does not exist

D

is equal to `27`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to \infty} \frac{(\sqrt{3x+1} + \sqrt{3x-1})^6 + (\sqrt{3x+1} - \sqrt{3x-1})^6}{(x + \sqrt{x^2 - 1})^6 + (x - \sqrt{x^2 - 1})^6} x^3, \] we will simplify the expression step by step. ### Step 1: Simplify the Numerator First, we analyze the terms in the numerator: \[ \sqrt{3x+1} \text{ and } \sqrt{3x-1}. \] As \(x\) approaches infinity, we can factor out \(\sqrt{x}\): \[ \sqrt{3x+1} = \sqrt{x}\sqrt{3 + \frac{1}{x}} \quad \text{and} \quad \sqrt{3x-1} = \sqrt{x}\sqrt{3 - \frac{1}{x}}. \] Thus, we have: \[ \sqrt{3x+1} + \sqrt{3x-1} = \sqrt{x} \left( \sqrt{3 + \frac{1}{x}} + \sqrt{3 - \frac{1}{x}} \right). \] As \(x \to \infty\), \(\sqrt{3 + \frac{1}{x}} \to \sqrt{3}\) and \(\sqrt{3 - \frac{1}{x}} \to \sqrt{3}\). Therefore: \[ \sqrt{3x+1} + \sqrt{3x-1} \to 2\sqrt{3}\sqrt{x}. \] Now, squaring this result gives: \[ (\sqrt{3x+1} + \sqrt{3x-1})^6 \to (2\sqrt{3}\sqrt{x})^6 = 64 \cdot 3^3 \cdot x^3 = 64 \cdot 27 \cdot x^3 = 1728 x^3. \] Next, we simplify the second term in the numerator: \[ \sqrt{3x+1} - \sqrt{3x-1} = \sqrt{x} \left( \sqrt{3 + \frac{1}{x}} - \sqrt{3 - \frac{1}{x}} \right). \] As \(x \to \infty\), \(\sqrt{3 + \frac{1}{x}} - \sqrt{3 - \frac{1}{x}} \to 0\). Thus, we find that: \[ (\sqrt{3x+1} - \sqrt{3x-1})^6 \to 0. \] So, the numerator simplifies to: \[ 1728 x^3 + 0 = 1728 x^3. \] ### Step 2: Simplify the Denominator Now we analyze the denominator: \[ x + \sqrt{x^2 - 1} \text{ and } x - \sqrt{x^2 - 1}. \] For large \(x\): \[ \sqrt{x^2 - 1} = x\sqrt{1 - \frac{1}{x^2}} \to x. \] Thus, \[ x + \sqrt{x^2 - 1} \to x + x = 2x, \] \[ x - \sqrt{x^2 - 1} \to x - x = 0. \] Now, we can calculate: \[ (x + \sqrt{x^2 - 1})^6 \to (2x)^6 = 64x^6, \] \[ (x - \sqrt{x^2 - 1})^6 \to 0. \] Thus, the denominator simplifies to: \[ 64x^6 + 0 = 64x^6. \] ### Step 3: Combine and Simplify Now we can combine the results: \[ \lim_{x \to \infty} \frac{1728 x^3}{64 x^6} x^3 = \lim_{x \to \infty} \frac{1728}{64} \cdot \frac{x^3}{x^6} x^3 = \lim_{x \to \infty} \frac{1728}{64} \cdot \frac{x^6}{x^6} = \frac{1728}{64}. \] Calculating \(\frac{1728}{64} = 27\). ### Final Answer Thus, the limit is: \[ \boxed{27}. \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)sqrt(3x)-sqrt(x-5)

lim_(x rarr oo)(sqrt(x)-3)/(sqrt(x)+3)

lim_(xrarr oo)(sqrt(3x^2-1)+sqrt(2x^2-1))/(4x+3)=

lim_(x rarr1)(4-sqrt(15x+1))/(2-sqrt(3x+1))

lim_(x rarr0)(3sqrt(1+x)3sqrt(-1-x))/(x)

lim_(x rarr1)((sqrt(3+x)-sqrt(5-x))/(x^(2)-1))

lim_(x rarr1)((sqrt(3+x)-sqrt(5-x))/(x^(2)-1))

lim_(x rarr 5) (sqrt(2x-3)-sqrt(3x-8))/(sqrt(2x-1)-sqrt(3x-6))= _______.

lim_(x rarr3)(sqrt(x+6)-3)/(sqrt(x+1)-2)=

lim_(x rarr a)(sqrt(3a+x)-2sqrt(x))/((sqrt(a+2x)-sqrt(3x)))=(3sqrt(3))/(2)

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. Let alpha>0.If int(0)^(alpha)(x)/(sqrt(x+alpha)-sqrt(x))dx=(16+20sqrt(...

    Text Solution

    |

  2. Let a(1),a(2),a(3),...... be an A.P.If a7=3,the product (a(1),a(4)) is...

    Text Solution

    |

  3. lim(x rarr oo)(((sqrt(3x+1)+sqrt(3x-1))^(6)+(sqrt(3x+1)-sqrt(3x-1))^6)...

    Text Solution

    |

  4. Let H be the hyperbola,whose foci are (1+-sqrt(2),0) and eccentricity ...

    Text Solution

    |

  5. The number of values of r in {p,q,~p,~q} for which (p^^q)implies (r vv...

    Text Solution

    |

  6. Among the relations S={(a,b):a,b in R-{0},2+(a)/(b)>0} and T={(a,b):a...

    Text Solution

    |

  7. The absolute minimum value,of the function f(x)=|x^(2)-x+1|+[x^(2)-x+1...

    Text Solution

    |

  8. Let (a,b) subset (0,2 pi) be the largest interval for which sin^(-1)(s...

    Text Solution

    |

  9. Let the mean and standard deviation of marks of class A of 100 student...

    Text Solution

    |

  10. Let f:R-{2,6} rarr R be real valued function defined as f(x)=(x^(2)+2x...

    Text Solution

    |

  11. The equation e^(4x)+8e^(3x)+13e^(2x)-8e^(x)+1=0,x in R has

    Text Solution

    |

  12. The complex number z=(i-1)/(cos((pi)/(3))+i sin((pi)/(3))) is equal to...

    Text Solution

    |

  13. f a point P(alpha,beta,gamma) satisfying (alpha,beta,gamma)((2,10,8),(...

    Text Solution

    |

  14. Let P be the plane, passing through the point (1, – 1, – 5) and perpen...

    Text Solution

    |

  15. Let vec a=hat i+2hat j+3hat k,vec b=hat i-hat j+2hat k and vec c=5hat ...

    Text Solution

    |

  16. Let the plane P:8x+alpha(1)y+alpha(2)z+12=0 be parallel to the line L:...

    Text Solution

    |

  17. Let A=[a(ij)]a(i)in Znn[0,4],1lei,jle2.The number of matrices A such t...

    Text Solution

    |

  18. Let vec a,vec b,vec c be three vectors such that |vec a|=sqrt(31),4,|v...

    Text Solution

    |

  19. The coefficient of x^(-6), in the expansion of ((4x)/(5)+(5)/(2x^(2)))...

    Text Solution

    |

  20. Let A be the event that the absolute difference between two randomly c...

    Text Solution

    |