Home
Class 12
MATHS
Let (a,b) subset (0,2 pi) be the largest...

Let `(a,b) subset (0,2 pi)` be the largest interval for which `sin^(-1)(sin theta)-cos^(-1)(sin theta)>0,theta in (0,2 pi),` holds.If `ax^(2)+beta x+sin^(-1)(x^(2)-6x+10)+cos^(-1)(x^(2)-6x+10)=0` and `alpha-beta=b-a,` then `alpha` is equal to,

A

`(pi)/(8)`

B

`(pi)/(48)`

C

`(pi)/(16)`

D

`(pi)/(12)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will break it down into manageable steps. ### Step 1: Analyze the inequality We need to find the largest interval \((a,b)\) for which: \[ \sin^{-1}(\sin \theta) - \cos^{-1}(\sin \theta) > 0 \] for \(\theta \in (0, 2\pi)\). ### Step 2: Simplify the expression Recall that: \[ \cos^{-1}(x) = \frac{\pi}{2} - \sin^{-1}(x) \] Thus, we can rewrite the inequality as: \[ \sin^{-1}(\sin \theta) - \left(\frac{\pi}{2} - \sin^{-1}(\sin \theta)\right) > 0 \] This simplifies to: \[ 2\sin^{-1}(\sin \theta) - \frac{\pi}{2} > 0 \] or \[ \sin^{-1}(\sin \theta) > \frac{\pi}{4} \] ### Step 3: Determine the values of \(\theta\) The function \(\sin^{-1}(\sin \theta)\) behaves differently depending on the interval of \(\theta\): - For \(\theta \in [0, \pi]\), \(\sin^{-1}(\sin \theta) = \theta\). - For \(\theta \in (\pi, 2\pi)\), \(\sin^{-1}(\sin \theta) = \pi - \theta\). Setting \(\theta > \frac{\pi}{4}\): - In the interval \((0, \pi)\), this gives \(\theta > \frac{\pi}{4}\). - In the interval \((\pi, 2\pi)\), we need \(\pi - \theta > \frac{\pi}{4}\) which simplifies to \(\theta < \frac{3\pi}{4}\). ### Step 4: Identify the interval \((a,b)\) From the analysis, we find: - In \((0, \pi)\): \(\theta \in \left(\frac{\pi}{4}, \pi\right)\) - In \((\pi, 2\pi)\): \(\theta \in \left(\pi, \frac{3\pi}{4}\right)\) is not valid since \(\frac{3\pi}{4} < \pi\). Thus, the largest interval is: \[ \left(\frac{\pi}{4}, \frac{3\pi}{4}\right) \] So, \(a = \frac{\pi}{4}\) and \(b = \frac{3\pi}{4}\). ### Step 5: Calculate \(b - a\) \[ b - a = \frac{3\pi}{4} - \frac{\pi}{4} = \frac{2\pi}{4} = \frac{\pi}{2} \] ### Step 6: Set up the equation We are given: \[ \alpha - \beta = b - a \] Thus: \[ \alpha - \beta = \frac{\pi}{2} \] ### Step 7: Analyze the equation We need to solve: \[ \alpha x^2 + \beta x + \sin^{-1}(x^2 - 6x + 10) + \cos^{-1}(x^2 - 6x + 10) = 0 \] ### Step 8: Simplify the quadratic expression The expression \(x^2 - 6x + 10\) can be rewritten as: \[ (x - 3)^2 + 1 \] This means \(x^2 - 6x + 10 \geq 1\) for all \(x\). ### Step 9: Find maximum values The maximum value of \(\sin^{-1}(x^2 - 6x + 10) + \cos^{-1}(x^2 - 6x + 10)\) is: \[ \sin^{-1}(1) + \cos^{-1}(1) = \frac{\pi}{2} + 0 = \frac{\pi}{2} \] ### Step 10: Set up the final equation Thus, we can rewrite the equation: \[ \alpha x^2 + \beta x + \frac{\pi}{2} = 0 \] ### Step 11: Solve for \(\alpha\) Substituting \(x = 3\) (the vertex of the quadratic): \[ \alpha(3^2) + \beta(3) + \frac{\pi}{2} = 0 \] This gives: \[ 9\alpha + 3\beta + \frac{\pi}{2} = 0 \] ### Step 12: Solve the system of equations From the two equations: 1. \(\alpha - \beta = \frac{\pi}{2}\) 2. \(9\alpha + 3\beta + \frac{\pi}{2} = 0\) Substituting \(\beta = \alpha - \frac{\pi}{2}\) into the second equation gives: \[ 9\alpha + 3(\alpha - \frac{\pi}{2}) + \frac{\pi}{2} = 0 \] This simplifies to: \[ 12\alpha - \frac{3\pi}{2} + \frac{\pi}{2} = 0 \] \[ 12\alpha - \pi = 0 \implies \alpha = \frac{\pi}{12} \] ### Final Answer Thus, the value of \(\alpha\) is: \[ \boxed{\frac{\pi}{12}} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of the quadratic equation x^(2)-2(1-sin2 theta)x-2cos^(2)(2 theta)=0, then the minimum value of (alpha^(2)+beta^(2)) is equal to

If alpha,beta are the roots of the quadratic equation x^(2)-2(1-sin2 theta)x-2cos^(2)(2 theta)=0, then the minimum value of (alpha^(2)+beta^(2)) is equal to

Number of solutions of 5cos^(2)theta-3sin^(2)theta+6sin theta cos theta=7 in the interval [0,2 pi) is:

Let alpha is the solution of equation sin^(-1)(2sin^(-1)(cos^(-1)(tan^(-1)x)))=0 and beta is the solution of equation sin^(-1)x+sin^(-1)x^(2)=(pi)/(2), then -

If cos (theta -alpha) =a, sin (theta - beta) =b, then cos ^(2) (alpha - beta) + 2 ab sin (alpha - beta) is equal to

If alpha and beta are roots of the equation x^(2)+sin theta_(12)x-2sin theta=0 then (a^(12)+beta^(12))/((a^(-12)+beta^(-12))(alpha-beta)^(24)) is equal to

Q.if solution of the equation 2sin^(-1)x cos^(-1)x-2 pi sin^(-1)x-pi cos^(-1)x+pi^(2)=0 are alpha and beta such that then which of the following is lare correct?

If alpha and beta are the roots of the equation (1)/(2)x^(2)-sin2 theta x+cos2 theta=0, then the value of (1)/(alpha)+(1)/(beta) is:

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. Among the relations S={(a,b):a,b in R-{0},2+(a)/(b)>0} and T={(a,b):a...

    Text Solution

    |

  2. The absolute minimum value,of the function f(x)=|x^(2)-x+1|+[x^(2)-x+1...

    Text Solution

    |

  3. Let (a,b) subset (0,2 pi) be the largest interval for which sin^(-1)(s...

    Text Solution

    |

  4. Let the mean and standard deviation of marks of class A of 100 student...

    Text Solution

    |

  5. Let f:R-{2,6} rarr R be real valued function defined as f(x)=(x^(2)+2x...

    Text Solution

    |

  6. The equation e^(4x)+8e^(3x)+13e^(2x)-8e^(x)+1=0,x in R has

    Text Solution

    |

  7. The complex number z=(i-1)/(cos((pi)/(3))+i sin((pi)/(3))) is equal to...

    Text Solution

    |

  8. f a point P(alpha,beta,gamma) satisfying (alpha,beta,gamma)((2,10,8),(...

    Text Solution

    |

  9. Let P be the plane, passing through the point (1, – 1, – 5) and perpen...

    Text Solution

    |

  10. Let vec a=hat i+2hat j+3hat k,vec b=hat i-hat j+2hat k and vec c=5hat ...

    Text Solution

    |

  11. Let the plane P:8x+alpha(1)y+alpha(2)z+12=0 be parallel to the line L:...

    Text Solution

    |

  12. Let A=[a(ij)]a(i)in Znn[0,4],1lei,jle2.The number of matrices A such t...

    Text Solution

    |

  13. Let vec a,vec b,vec c be three vectors such that |vec a|=sqrt(31),4,|v...

    Text Solution

    |

  14. The coefficient of x^(-6), in the expansion of ((4x)/(5)+(5)/(2x^(2)))...

    Text Solution

    |

  15. Let A be the event that the absolute difference between two randomly c...

    Text Solution

    |

  16. If the constant term in the binomial expansion of ((x^(5/2))/(2)-(4)/(...

    Text Solution

    |

  17. Let the area of the region {(x,y):abs(2x-1)leyleabs(x^(2)-x),0lexle1} ...

    Text Solution

    |

  18. Let A be a n times n matrix such that abs(A)=2.If the determinant of t...

    Text Solution

    |

  19. The sum 1^(2)-2.3^(2)+3.5^(2)-4.7^(2)+5.9^(2)- . . . +15.29^(2) is

    Text Solution

    |

  20. If "^(2n+1)P(n-1):^(2n-1)P(n)=11:21,then n^(2)+n+15 is equal to :

    Text Solution

    |