Home
Class 12
MATHS
Let f:R-{2,6} rarr R be real valued func...

Let `f:R-{2,6} rarr R` be real valued function defined as `f(x)=(x^(2)+2x+1)/(x^(2)-8x+12).` Then range of `f` is

A

`(-oo,-(21)/(4)|uu[(21)/(4),oo)`

B

`(-oo,-(21)/(4)]uu[0,oo)`

C

`(-oo,-(21)/(4))uu(0,oo)`

D

`(-oo,-(21)/(4)]uu(1,oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12} \), we will follow these steps: ### Step 1: Rewrite the function We can rewrite the function as: \[ f(x) = \frac{(x + 1)^2}{(x - 2)(x - 6)} \] ### Step 2: Set \( f(x) = y \) We will set \( f(x) = y \) and cross-multiply: \[ y(x^2 - 8x + 12) = x^2 + 2x + 1 \] This leads to: \[ yx^2 - 8yx + 12y = x^2 + 2x + 1 \] ### Step 3: Rearrange the equation Rearranging gives us: \[ (y - 1)x^2 + (-8y - 2)x + (12y - 1) = 0 \] ### Step 4: Determine the discriminant For \( f(x) \) to have real values, the discriminant of this quadratic equation must be non-negative: \[ D = (-8y - 2)^2 - 4(y - 1)(12y - 1) \geq 0 \] ### Step 5: Calculate the discriminant Calculating the discriminant: \[ D = (64y^2 + 32y + 4) - 4[(y - 1)(12y - 1)] \] Expanding the second term: \[ D = 64y^2 + 32y + 4 - 4(12y^2 - 13y + 1) \] This simplifies to: \[ D = 64y^2 + 32y + 4 - 48y^2 + 52y - 4 \] Combining like terms: \[ D = 16y^2 + 84y \] ### Step 6: Factor the discriminant Factoring gives: \[ D = 4y(4y + 21) \geq 0 \] ### Step 7: Solve the inequality The solutions to this inequality are: 1. \( y \leq 0 \) (from \( 4y \geq 0 \)) 2. \( y \geq -\frac{21}{4} \) (from \( 4y + 21 \geq 0 \)) ### Step 8: Exclude \( y = 1 \) Since \( f(x) \) cannot equal 1 (as shown in the video), we exclude this value from our range. ### Step 9: Final range Thus, the range of \( f(x) \) is: \[ (-\infty, -\frac{21}{4}] \cup (0, \infty) \quad \text{except } y = 1 \] ### Final Answer The range of \( f \) is: \[ (-\infty, -\frac{21}{4}] \cup (0, 1) \cup (1, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

Let f:R rarr R be a function defined by f(x)=(x^(2)+2x+5)/(x^(2)+x+1) is

The function f:R rarr R defined as f(x)=(x^(2)-x+1)/(x^(2)+x+1) is

Let f:R rarr R be a function defined as f(x)=(x^(2)-6)/(x^(2)+2) , then f is

Let f:R to R be a function defined by f(x)=(x^(2)-8)/(x^(2)+2) . Then f is

Let f:R rarr R be a function defined by f(x)=x+sqrt(x^(2)), then fis

Let f:R rarr R be a function defined by f(x)=(x^(2)-3x+4)/(x^(2)+3x+4) then fis-

let f:R rarr R be a continuous function defined by f(x)=(1)/(e^(x)+2e^(-x))

Let f:R rarr R be a function defined by f(x)=x^(3)+x^(2)+3x+sin x. Then f is

If f:R rarr[-1, 1] be a function defined as f(x)=sin((x^(2)-8)/(x^(2)+2)) , then f is

Let f:R rarr R be the function defined by f(x)=x^(3)+5 then f^(-1)(x) is

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. Let (a,b) subset (0,2 pi) be the largest interval for which sin^(-1)(s...

    Text Solution

    |

  2. Let the mean and standard deviation of marks of class A of 100 student...

    Text Solution

    |

  3. Let f:R-{2,6} rarr R be real valued function defined as f(x)=(x^(2)+2x...

    Text Solution

    |

  4. The equation e^(4x)+8e^(3x)+13e^(2x)-8e^(x)+1=0,x in R has

    Text Solution

    |

  5. The complex number z=(i-1)/(cos((pi)/(3))+i sin((pi)/(3))) is equal to...

    Text Solution

    |

  6. f a point P(alpha,beta,gamma) satisfying (alpha,beta,gamma)((2,10,8),(...

    Text Solution

    |

  7. Let P be the plane, passing through the point (1, – 1, – 5) and perpen...

    Text Solution

    |

  8. Let vec a=hat i+2hat j+3hat k,vec b=hat i-hat j+2hat k and vec c=5hat ...

    Text Solution

    |

  9. Let the plane P:8x+alpha(1)y+alpha(2)z+12=0 be parallel to the line L:...

    Text Solution

    |

  10. Let A=[a(ij)]a(i)in Znn[0,4],1lei,jle2.The number of matrices A such t...

    Text Solution

    |

  11. Let vec a,vec b,vec c be three vectors such that |vec a|=sqrt(31),4,|v...

    Text Solution

    |

  12. The coefficient of x^(-6), in the expansion of ((4x)/(5)+(5)/(2x^(2)))...

    Text Solution

    |

  13. Let A be the event that the absolute difference between two randomly c...

    Text Solution

    |

  14. If the constant term in the binomial expansion of ((x^(5/2))/(2)-(4)/(...

    Text Solution

    |

  15. Let the area of the region {(x,y):abs(2x-1)leyleabs(x^(2)-x),0lexle1} ...

    Text Solution

    |

  16. Let A be a n times n matrix such that abs(A)=2.If the determinant of t...

    Text Solution

    |

  17. The sum 1^(2)-2.3^(2)+3.5^(2)-4.7^(2)+5.9^(2)- . . . +15.29^(2) is

    Text Solution

    |

  18. If "^(2n+1)P(n-1):^(2n-1)P(n)=11:21,then n^(2)+n+15 is equal to :

    Text Solution

    |

  19. Let S be the set of all a in N such that the area of the triangle form...

    Text Solution

    |

  20. Let the tangents at the points A(4,-11) and B(8,-5) on the circle x^(2...

    Text Solution

    |